Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2022_17_2_a13, author = {A. I. Abakumov and S. Ya. Pak}, title = {Two approaches to modeling phytoplankton biomass dynamics based on the {Droop} model}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {401--422}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a13/} }
TY - JOUR AU - A. I. Abakumov AU - S. Ya. Pak TI - Two approaches to modeling phytoplankton biomass dynamics based on the Droop model JO - Matematičeskaâ biologiâ i bioinformatika PY - 2022 SP - 401 EP - 422 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a13/ LA - ru ID - MBB_2022_17_2_a13 ER -
%0 Journal Article %A A. I. Abakumov %A S. Ya. Pak %T Two approaches to modeling phytoplankton biomass dynamics based on the Droop model %J Matematičeskaâ biologiâ i bioinformatika %D 2022 %P 401-422 %V 17 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a13/ %G ru %F MBB_2022_17_2_a13
A. I. Abakumov; S. Ya. Pak. Two approaches to modeling phytoplankton biomass dynamics based on the Droop model. Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022) no. 2, pp. 401-422. http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a13/
[1] Z. Z. Finenko, V. V. Suslin, T. Ya. Churilova, “Regionalnaya model dlya rascheta pervichnoi produktsii chernogo morya s ispolzovaniem dannykh sputnikovogo skanera tsveta seawifs”, Morskoi ekologicheskii zhurnal, 8:1 (2009), 81–106
[2] A. B. Rubin, T. E. Krendeleva, “Regulyatsiya pervichnykh protsessov fotosinteza”, Uspekhi biologicheskoi khimii, 43:1 (2003), 225–266
[3] V. N. Belyanin, F. Ya. Sidko, A. P. Trenkenshu, Energetika fotosinteziruyuschei kultury mikrovodoroslei, Nauka, Sib. otd, 1980
[4] A. Nikolaou, P. Hartmann, A. Sciandra, B. Chachuat, O. Bernard, “Dynamic coupling of photoacclimation and photoinhibition in a model of microalgae growth”, J. Theoret. Biology, 390 (2016), 61–72 | DOI
[5] N. M. Mineeva, L. A. Schur, “Soderzhanie khlorofilla a v edinitse biomassy fitoplanktona (obzor)”, Algologiya, 22:4 (2012), 441–456
[6] K. H. Nicholls, P. J. Dillon, “An Evaluation of Phosphorus-Chlorophyll-Phytoplankton Relationships for Lakes”, Int. Rev. ges. Hydrobiol. Hydrogr, 63:2 (1978), 141–154 | DOI
[7] S. I. Sidelev, O. V. Babanazarova, “Analiz svyazei pigmentnykh i strukturnykh kharakteristik fitoplanktona vysokoevtrofnogo ozera”, Zhurnal Sibirskogo federalnogo universiteta. Seriya «Biologiya», 1:2 (2008), 162–177
[8] P. H.C. Eilers, J. C.H. Peeters, “A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton”, J. Ecol. Model, 42:3-4 (1988), 199–215
[9] A. V. Kuznetsova, S. I. Pogosyan, E. N. Voronova, I. V. Konyukhov, A. B. Rubin, “Vliyanie defitsita azota na rost i sostoyanie fotosinteticheskogo apparata zelenoi vodorosli Shlamydomonas reinhardtii”, Voda: khimiya i ekologiya, 2012, no. 4, 68–76
[10] H. Imamura, K. P. Huynh Nhat, H. Togawa, K. Saito, R. Iino, Y. Kato-Yamada, T. Nagai, H. Noji, “Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators”, Proceedings of the National Academy of Sciences, 106:37 (2009), 15651–15656
[11] T. Platt, C. Caverhill, S. Sathyendranath, “Basin-scale estimates of oceanic primary production by remote sensing: The North Atlantic”, Journal of Geophysical Research: Oceans, 96:C8 (1991), 15147–15159
[12] B. L. Hunter, E. A. Laws, “ATP and chlorophyll a as estimators of phytoplankton carbon biomass”, Limnology and Oceanography, 26:5 (1981), 944–956
[13] F. Mairet, O. Bernard, T. Lacour, A. Sciandra, “Modelling microalgae growth in nitrogen limited photobiorector for estimating biomass, carbohydrate and neutral lipid productivities”, J. IFAC Proceedings, 44:1 (2011), 10591–10596
[14] O. Bernard, “Hurdles and challenges for modelling and control of microalgae for CO$_2$ mitigation and biofuel production”, J. of Process Control, 2011, no. 21, 1378–1389 | DOI
[15] M. R. Droop, “Some thoughts on nutrient limitation in algae”, J. Phycol, 1973, no. 9, 264–272
[16] A. I. Abakumov, S. Ya. Pak, “Modelirovanie protsessa fotosinteza i otsenka dinamiki biomassy fitoplanktona na osnove modeli Drupa”, Matematicheskaya biologiya i bioinformatika, 16:2 (2021), 380–393 | DOI
[17] J. Monod, “The growth of bacterial cultures”, Annu. Rev. Microbiol, 111:2 (1949), 371–394
[18] M. R. Droop, “The nutrient status of algal cells in continuous culture”, J. Mar. Biol. Assoc. U.K., 54 (1974), 825–855
[19] A. Guzman-Palomino, L. Aguilera-Vazquez, H. Hernandez-Escoto, Garcia-Vite P. M., “Sensitivity, Equilibria, and Lyapunov Stability Analysis in Droop's Nonlinear Differential Equation System for Batch Operation Mode of Microalgae Culture Systems”, Mathematics, 9:18 (2021), 2192
[20] B. P. Han, “A mechanistic model of algal photoinhibition induced by photodamage to photosystem-II”, Journal of Theoret. Biology, 214:4 (2002), 519–527
[21] P. Tett, J. C. Cottrell, D. O. Trew, B. J.B. Wood, “Phosphorus quota and the chlorophyll: carbon ratio in marine phytoplankton”, Limnology and Oceanography, 20:4 (1975), 587–603
[22] V. A. Silkin, A. I. Abakumov, L. A. Pautova, S. V. Pakhomova, A. V. Lifanchuk, “Mechanisms of regulation of invasive processes in phytoplankton on the example of the north-eastern part of the Black Sea”, Aquatic Ecology, 50:2 (2016), 221–234 | DOI
[23] N. G. Lutsenko, Nachala biokhimii, Kurs lektsii/RKhTU im. Mendeleeva, MAIK «Nauka/Interperiodika», M., 2002, 125 pp.
[24] A. S. Gonchenko, S. V. Gonchenko, A. O. Kazakov, A. D. Kozlov, “Matematicheskaya teoriya dinamicheskogo khaosa i ee prilozheniya: Obzor. Chast 1. Psevdogiperbolicheskie attraktory”, Izvestiya vysshikh uchebnykh zavedenii. Prikladnaya nelineinaya dinamika, 25:2 (2017), 4–36
[25] A. I. Aleksanin, V. A. Kachur, “Specificity of atmospheric correction of satellite data on ocean color in the Far East”, Izv. Atmos. Ocean. Phys., 53:9 (2017), 996–1006 | DOI
[26] C. Yang, Q. Hua, K. Shimizu, “Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions”, Biochem. Eng. J., 6:2 (2000), 87–102
[27] T. Mock, K. Junge, “Psychrophilic diatoms: mechanisms for survival in freeze-thaw cycles”, Algae and Cyanobacteria in Extreme Environments. Cellular Origin, Life in Extreme Habitats and Astrobiology, ed. Seckbach J., 2007, 343–364 | DOI
[28] E. V. Lepskaya, V. V. Kolomeitsev, O. B. Tepnin, M. V. Koval, “Fitoplankton u Yugo-Zapadnogo poberezhya Kamchatki v 2007 godu”, Issledovaniya vodnykh biologicheskikh resursov kamchatki i severo-zapadnoi chasti Tikhogo okeana, 2009, no. 15, 21–33
[29] C. Carmeli, M. Avron, “A Light-Triggered Adenosine Triphosphate-Phosphate Exchange Reaction in Chloroplasts”, European Journal of Biochemistry, 2:3 (1967), 318–326
[30] Buchanan B. B., W. Gruissem, R. L. Jones (eds.), Biochemistry and molecular biology of plants, John Wiley Sons, 2015
[31] Reynolds C., Ecology, biodiversity, conservation. Ecology of Phytoplankton, v. 1, 2006
[32] S. Guo, Z. Zhao, J. Liang, J. Du, Sun X., “Carbon biomass, carbon-to-chlorophyll a ratio and the growth rate of phytoplankton in Jiaozhou Bay, China”, J. Ocean. Limnol, 39:4 (2021), 1328–1342
[33] C. Zonneveld, “A cell-based model for the chlorophyll a to carbon ratio in phytoplankton”, J. Ecol. Model, 113:1-3 (1998), 55–70
[34] O. Holm-Hansen, C. R. Booth, “The measurement of adenosine triphosphate in the ocean and its ecological significance 1”, Limnology and Oceanography, 11:4 (1966), 510–519
[35] M. Sinclair, E. Keighan, J. Jones, “ATP as a measure of living phytoplankton carbon in estuaries”, Journal of the Fisheries Board of Canada, 36:2 (1979), 180–186
[36] H. Y. Adamson, R. G. Hiller, M. Vesk, “Chloroplast development and the synthesis of chlorophyll a and b and chlorophyll protein complexes I and II in the dark in Tradescantia albiflora (Kunth)”, Planta, 150:4 (1980), 269–274
[37] V. V. Trofimova, P. R. Makarevich, “Sutochnaya dinamika khlorofilla fitoplanktonnogo soobschestva estuarnoi zony Kolskogo zaliva (Barentsevo more)”, Algologiya, 19:2 (2009), 145–154
[38] E. Martinez, D. Antoine, F. d'Ortenzio, C. de Boyer Montegut, “Phytoplankton spring and fall blooms in the North Atlantic in the 1980s and 2000s”, Journal of Geophysical Research: Oceans, 116:11 (2011)
[39] J. M. Colebrook, “Continuous plankton records: seasonal cycles of phytoplankton and copepods in the North Atlantic Ocean and the North Sea”, Marine Biology, 51:1 (1979), 23–32
[40] Maksimova V. N. (red.), Izmeneniya v prirodnykh biologicheskikh sistemakh, Izd-vo «RAGS», M., 2004, 368 pp.
[41] S. Y. Pak, A. I. Abakumov, “Phytoplankton in the Sea of Okhotsk along Western Kamchatka: warm vs cold years”, J. Ecol. Model, 433 (2020), 109244
[42] A. I. Abakumov, Y. G. Izrailsky, “Model method of vertical chlorophyll concentration reconstruction from satellite data”, Computer Research and Modeling, 5:3 (2013), 473–482