Two approaches to modeling phytoplankton biomass dynamics based on the Droop model
Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022) no. 2, pp. 401-422.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work continues the study of the Droop model based on the concept of cell quota. Description of the photosynthetic processes in phytoplankton includes in the model structure. The concept of chlorophyll quota is used. It is the proportion of photosynthetic substances in plant cells. In addition to the chlorophyll quota, the photosynthetic activity of phytoplankton is determined by external conditions, primarily by the level of photosynthetically active radiation (PAR). The model is based on separating the dependence of phytoplankton reproduction on external conditions according to the stages of photosynthesis. The light stage is largely determined by the PAR, and the dark stage is limited by the nutrient resource under the controlling influence of the temperature of the aquatic environment. In order to develop the model, the storage of energy in the light stage of photosynthesis is described in detail. Energy is stored in the form of energyintensive substances in macroergic molecules (macroergs). The most common cell macroerg is adenosine triphosphate (ATP). The proportion of ATP in phytoplankton varies depending on the light regime and on the energy amount stored in the dark stage. The model includes the Droop kinetics and equations for the dynamics of the chlorophyll quota and the ATP pool. The conditions for the existence and stability of equilibrium solutions are compared for the same values of parameters common to both models. The greatest influence on the dynamic modes of the minimum value of the cell quota has been established. The proportion of biomass associated with the light period of photosynthesis is also significant. For the first model that is the biomass produced during daylight hours. And in terms of the second model, it is the biomass formed due to the energy of ATP stored in the light phase. The influence of the structure of dynamic models on the daily and annual dynamics of phytoplankton was revealed. Scenarios of behavior of models under various lighting conditions, including constant and periodically changing lighting, have been studied.
@article{MBB_2022_17_2_a13,
     author = {A. I. Abakumov and S. Ya. Pak},
     title = {Two approaches to modeling phytoplankton biomass dynamics based on the {Droop} model},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {401--422},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a13/}
}
TY  - JOUR
AU  - A. I. Abakumov
AU  - S. Ya. Pak
TI  - Two approaches to modeling phytoplankton biomass dynamics based on the Droop model
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2022
SP  - 401
EP  - 422
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a13/
LA  - ru
ID  - MBB_2022_17_2_a13
ER  - 
%0 Journal Article
%A A. I. Abakumov
%A S. Ya. Pak
%T Two approaches to modeling phytoplankton biomass dynamics based on the Droop model
%J Matematičeskaâ biologiâ i bioinformatika
%D 2022
%P 401-422
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a13/
%G ru
%F MBB_2022_17_2_a13
A. I. Abakumov; S. Ya. Pak. Two approaches to modeling phytoplankton biomass dynamics based on the Droop model. Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022) no. 2, pp. 401-422. http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a13/

[1] Z. Z. Finenko, V. V. Suslin, T. Ya. Churilova, “Regionalnaya model dlya rascheta pervichnoi produktsii chernogo morya s ispolzovaniem dannykh sputnikovogo skanera tsveta seawifs”, Morskoi ekologicheskii zhurnal, 8:1 (2009), 81–106

[2] A. B. Rubin, T. E. Krendeleva, “Regulyatsiya pervichnykh protsessov fotosinteza”, Uspekhi biologicheskoi khimii, 43:1 (2003), 225–266

[3] V. N. Belyanin, F. Ya. Sidko, A. P. Trenkenshu, Energetika fotosinteziruyuschei kultury mikrovodoroslei, Nauka, Sib. otd, 1980

[4] A. Nikolaou, P. Hartmann, A. Sciandra, B. Chachuat, O. Bernard, “Dynamic coupling of photoacclimation and photoinhibition in a model of microalgae growth”, J. Theoret. Biology, 390 (2016), 61–72 | DOI

[5] N. M. Mineeva, L. A. Schur, “Soderzhanie khlorofilla a v edinitse biomassy fitoplanktona (obzor)”, Algologiya, 22:4 (2012), 441–456

[6] K. H. Nicholls, P. J. Dillon, “An Evaluation of Phosphorus-Chlorophyll-Phytoplankton Relationships for Lakes”, Int. Rev. ges. Hydrobiol. Hydrogr, 63:2 (1978), 141–154 | DOI

[7] S. I. Sidelev, O. V. Babanazarova, “Analiz svyazei pigmentnykh i strukturnykh kharakteristik fitoplanktona vysokoevtrofnogo ozera”, Zhurnal Sibirskogo federalnogo universiteta. Seriya «Biologiya», 1:2 (2008), 162–177

[8] P. H.C. Eilers, J. C.H. Peeters, “A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton”, J. Ecol. Model, 42:3-4 (1988), 199–215

[9] A. V. Kuznetsova, S. I. Pogosyan, E. N. Voronova, I. V. Konyukhov, A. B. Rubin, “Vliyanie defitsita azota na rost i sostoyanie fotosinteticheskogo apparata zelenoi vodorosli Shlamydomonas reinhardtii”, Voda: khimiya i ekologiya, 2012, no. 4, 68–76

[10] H. Imamura, K. P. Huynh Nhat, H. Togawa, K. Saito, R. Iino, Y. Kato-Yamada, T. Nagai, H. Noji, “Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators”, Proceedings of the National Academy of Sciences, 106:37 (2009), 15651–15656

[11] T. Platt, C. Caverhill, S. Sathyendranath, “Basin-scale estimates of oceanic primary production by remote sensing: The North Atlantic”, Journal of Geophysical Research: Oceans, 96:C8 (1991), 15147–15159

[12] B. L. Hunter, E. A. Laws, “ATP and chlorophyll a as estimators of phytoplankton carbon biomass”, Limnology and Oceanography, 26:5 (1981), 944–956

[13] F. Mairet, O. Bernard, T. Lacour, A. Sciandra, “Modelling microalgae growth in nitrogen limited photobiorector for estimating biomass, carbohydrate and neutral lipid productivities”, J. IFAC Proceedings, 44:1 (2011), 10591–10596

[14] O. Bernard, “Hurdles and challenges for modelling and control of microalgae for CO$_2$ mitigation and biofuel production”, J. of Process Control, 2011, no. 21, 1378–1389 | DOI

[15] M. R. Droop, “Some thoughts on nutrient limitation in algae”, J. Phycol, 1973, no. 9, 264–272

[16] A. I. Abakumov, S. Ya. Pak, “Modelirovanie protsessa fotosinteza i otsenka dinamiki biomassy fitoplanktona na osnove modeli Drupa”, Matematicheskaya biologiya i bioinformatika, 16:2 (2021), 380–393 | DOI

[17] J. Monod, “The growth of bacterial cultures”, Annu. Rev. Microbiol, 111:2 (1949), 371–394

[18] M. R. Droop, “The nutrient status of algal cells in continuous culture”, J. Mar. Biol. Assoc. U.K., 54 (1974), 825–855

[19] A. Guzman-Palomino, L. Aguilera-Vazquez, H. Hernandez-Escoto, Garcia-Vite P. M., “Sensitivity, Equilibria, and Lyapunov Stability Analysis in Droop's Nonlinear Differential Equation System for Batch Operation Mode of Microalgae Culture Systems”, Mathematics, 9:18 (2021), 2192

[20] B. P. Han, “A mechanistic model of algal photoinhibition induced by photodamage to photosystem-II”, Journal of Theoret. Biology, 214:4 (2002), 519–527

[21] P. Tett, J. C. Cottrell, D. O. Trew, B. J.B. Wood, “Phosphorus quota and the chlorophyll: carbon ratio in marine phytoplankton”, Limnology and Oceanography, 20:4 (1975), 587–603

[22] V. A. Silkin, A. I. Abakumov, L. A. Pautova, S. V. Pakhomova, A. V. Lifanchuk, “Mechanisms of regulation of invasive processes in phytoplankton on the example of the north-eastern part of the Black Sea”, Aquatic Ecology, 50:2 (2016), 221–234 | DOI

[23] N. G. Lutsenko, Nachala biokhimii, Kurs lektsii/RKhTU im. Mendeleeva, MAIK «Nauka/Interperiodika», M., 2002, 125 pp.

[24] A. S. Gonchenko, S. V. Gonchenko, A. O. Kazakov, A. D. Kozlov, “Matematicheskaya teoriya dinamicheskogo khaosa i ee prilozheniya: Obzor. Chast 1. Psevdogiperbolicheskie attraktory”, Izvestiya vysshikh uchebnykh zavedenii. Prikladnaya nelineinaya dinamika, 25:2 (2017), 4–36

[25] A. I. Aleksanin, V. A. Kachur, “Specificity of atmospheric correction of satellite data on ocean color in the Far East”, Izv. Atmos. Ocean. Phys., 53:9 (2017), 996–1006 | DOI

[26] C. Yang, Q. Hua, K. Shimizu, “Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions”, Biochem. Eng. J., 6:2 (2000), 87–102

[27] T. Mock, K. Junge, “Psychrophilic diatoms: mechanisms for survival in freeze-thaw cycles”, Algae and Cyanobacteria in Extreme Environments. Cellular Origin, Life in Extreme Habitats and Astrobiology, ed. Seckbach J., 2007, 343–364 | DOI

[28] E. V. Lepskaya, V. V. Kolomeitsev, O. B. Tepnin, M. V. Koval, “Fitoplankton u Yugo-Zapadnogo poberezhya Kamchatki v 2007 godu”, Issledovaniya vodnykh biologicheskikh resursov kamchatki i severo-zapadnoi chasti Tikhogo okeana, 2009, no. 15, 21–33

[29] C. Carmeli, M. Avron, “A Light-Triggered Adenosine Triphosphate-Phosphate Exchange Reaction in Chloroplasts”, European Journal of Biochemistry, 2:3 (1967), 318–326

[30] Buchanan B. B., W. Gruissem, R. L. Jones (eds.), Biochemistry and molecular biology of plants, John Wiley Sons, 2015

[31] Reynolds C., Ecology, biodiversity, conservation. Ecology of Phytoplankton, v. 1, 2006

[32] S. Guo, Z. Zhao, J. Liang, J. Du, Sun X., “Carbon biomass, carbon-to-chlorophyll a ratio and the growth rate of phytoplankton in Jiaozhou Bay, China”, J. Ocean. Limnol, 39:4 (2021), 1328–1342

[33] C. Zonneveld, “A cell-based model for the chlorophyll a to carbon ratio in phytoplankton”, J. Ecol. Model, 113:1-3 (1998), 55–70

[34] O. Holm-Hansen, C. R. Booth, “The measurement of adenosine triphosphate in the ocean and its ecological significance 1”, Limnology and Oceanography, 11:4 (1966), 510–519

[35] M. Sinclair, E. Keighan, J. Jones, “ATP as a measure of living phytoplankton carbon in estuaries”, Journal of the Fisheries Board of Canada, 36:2 (1979), 180–186

[36] H. Y. Adamson, R. G. Hiller, M. Vesk, “Chloroplast development and the synthesis of chlorophyll a and b and chlorophyll protein complexes I and II in the dark in Tradescantia albiflora (Kunth)”, Planta, 150:4 (1980), 269–274

[37] V. V. Trofimova, P. R. Makarevich, “Sutochnaya dinamika khlorofilla fitoplanktonnogo soobschestva estuarnoi zony Kolskogo zaliva (Barentsevo more)”, Algologiya, 19:2 (2009), 145–154

[38] E. Martinez, D. Antoine, F. d'Ortenzio, C. de Boyer Montegut, “Phytoplankton spring and fall blooms in the North Atlantic in the 1980s and 2000s”, Journal of Geophysical Research: Oceans, 116:11 (2011)

[39] J. M. Colebrook, “Continuous plankton records: seasonal cycles of phytoplankton and copepods in the North Atlantic Ocean and the North Sea”, Marine Biology, 51:1 (1979), 23–32

[40] Maksimova V. N. (red.), Izmeneniya v prirodnykh biologicheskikh sistemakh, Izd-vo «RAGS», M., 2004, 368 pp.

[41] S. Y. Pak, A. I. Abakumov, “Phytoplankton in the Sea of Okhotsk along Western Kamchatka: warm vs cold years”, J. Ecol. Model, 433 (2020), 109244

[42] A. I. Abakumov, Y. G. Izrailsky, “Model method of vertical chlorophyll concentration reconstruction from satellite data”, Computer Research and Modeling, 5:3 (2013), 473–482