Estimation of oxygen and glucose concentration distribution in the rat brain arterial system
Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022) no. 2, pp. 386-400.

Voir la notice de l'article provenant de la source Math-Net.Ru

Glucose and oxygen concentration gradients are the key indicators that form the trophic tissue supply in mammalian brain. To describe them in detail it is essential to combine the solution of both hemodynamics and the convection-diffusion-reaction problems in the tissue. Visualization of spatio-temporal distributions of the metabolites noted above can be carried out both using the gradients themselves and the corresponding probability density functions. In the case of considering large parts of the brain, as well as the entire organ as a whole, the second method for metabolite heterogeneity description is of greater interest for practical purposes. This paper presents an approach to obtain a probability density functions based on structural segmentation of the diffusion region using Delaunay triangulation and the spherical source diffusion field method. It is shown that the average values of the estimated distributions deviate by 8% from the experimentally obtained results and it corresponds to the best match during the validation by the finite element method in the triangulation simplices of basic topology. Given the relatively low computational complexity of both the segmentation process and the estimation of concentration in a single segment, the proposed method to obtain integral distributions of various compounds, in particular glucose and oxygen, can be used as an affordable alternative to precise calculation of the concentration gradients in the whole brain and its distinct anatomical structures.
@article{MBB_2022_17_2_a12,
     author = {V. S. Kopylova and S. E. Boronovskiy and Ya. R. Nartsissov},
     title = {Estimation of oxygen and glucose concentration distribution in the rat brain arterial system},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {386--400},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a12/}
}
TY  - JOUR
AU  - V. S. Kopylova
AU  - S. E. Boronovskiy
AU  - Ya. R. Nartsissov
TI  - Estimation of oxygen and glucose concentration distribution in the rat brain arterial system
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2022
SP  - 386
EP  - 400
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a12/
LA  - ru
ID  - MBB_2022_17_2_a12
ER  - 
%0 Journal Article
%A V. S. Kopylova
%A S. E. Boronovskiy
%A Ya. R. Nartsissov
%T Estimation of oxygen and glucose concentration distribution in the rat brain arterial system
%J Matematičeskaâ biologiâ i bioinformatika
%D 2022
%P 386-400
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a12/
%G ru
%F MBB_2022_17_2_a12
V. S. Kopylova; S. E. Boronovskiy; Ya. R. Nartsissov. Estimation of oxygen and glucose concentration distribution in the rat brain arterial system. Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022) no. 2, pp. 386-400. http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a12/

[1] P. Macheras, A. Iliadis, Modeling in Biopharmaceutics, Pharmacokinetics and Pharmacodynamics: Homogeneous and Heterogeneous Approaches, Springer International Publishing, 2016 | DOI

[2] D. A. Boas, S. R. Jones, A. Devor, T. J. Huppert, A. M. Dale, “A vascular anatomical network model of the spatio-temporal response to brain activation”, NeuroImage, 40:3 (2008), 1116–1129 | DOI

[3] E. M. Chung, J. P. Hague, D. H. Evans, “Revealing the mechanisms underlying embolic stroke using computational modelling”, Phys. Med. Biol., 52:23 (2007), 7153–7166 | DOI

[4] N. Safaeian, T. David, “A computational model of oxygen transport in the cerebrocapillary levels for normal and pathologic brain function”, J. Cereb. Blood Flow Metab., 33:10 (2013), 1633–1641 | DOI

[5] T. W. Secomb, K. V. Bullock, D. A. Boas, S. Sakadzic, “The mass transfer coefficient for oxygen transport from blood to tissue in cerebral cortex”, J. Cereb. Blood Flow Metab., 40:8 (2020), 1634–1646 | DOI

[6] Y. R. Nartsissov, “Application of a multicomponent model of convectional reaction-diffusion to description of glucose gradients in a neurovascular unit”, Frontiers in Physiology, 13 (2022), 843473 | DOI

[7] M. Sharan, A. S. Popel, “A compartmental model for oxygen transport in brain microcirculation in the presence of blood substitutes”, J. Theor. Biol., 216:4 (2002), 479–500 | DOI

[8] Q. Fang, S. Sakadzic, L. Ruvinskaya, A. Devor, A. M. Dale, D. A. Boas, “Oxygen advection and diffusion in a three-dimensional vascular anatomical network”, Opt. Express., 16:22 (2008), 17530–17541 | DOI

[9] I. Espinoza, P. Peschke, C. P. Karger, “A model to simulate the oxygen distribution in hypoxic tumors for different vascular architectures”, Med. Phys., 40:8 (2013), 081703 | DOI

[10] E. Vendel, V. Rottschafer, E. C.M. de Lange, “The need for mathematical modelling of spatial drug distribution within the brain”, Fluids Barriers CNS, 16:1 (2019), 12 | DOI

[11] I. D. Sutalo, A. V. Bui, K. Liffman, R. Manasseh, “Transport by pulsatile flow in a branching network of cerebral vasculature”, WIT Transactions on Biomedicine and Health., 17 (2013), 13–24 | DOI

[12] M. C. Lehmpfuhl, A. Hess, M. A. Gaudnek, M. Sibila, “Fluid dynamic simulation of rat brain vessels, geometrically reconstructed from MR-angiography and validated using phase contrast angiography”, Phys. Med., 27:3 (2011), 169–176 | DOI

[13] M. Aoi, P. Gremaud, H. T. Tran, V. Novak, M. S. Olufsen, “Modeling cerebral blood flow and regulation”, Proc. Conf. IEEE Eng. Med. Biol. Soc., 2009 (2009), 5470–5473 | DOI

[14] Y. Cai, J. Zhang, J. Wu, Z. Y. Li, “Oxygen transport in a three-dimensional microvascular network incorporated with early tumour growth and preexisting vessel cooption: numerical simulation study”, BioMed Res. Int., 2015 (2015), 476964 | DOI

[15] D. A. Beard, J. B. Bassingthwaighte, “Advection and diffusion of substances in biological tissues with complex vascular networks”, Ann. Biomed. Eng., 28:3 (2000), 253–268 | DOI

[16] A. Dokoumetzidis, P. Macheras, “A model for transport and dispersion in the circulatory system based on the vascular fractal tree”, Ann. Biomed. Eng., 31:3 (2003), 284–293 | DOI

[17] C. Coutey, M. Berg, H. Ho, P. Hunter, Computational simulation of blood flow and drug transportation in a large vasculature, Computational Biomechanics for Medicine, Springer, 2016 | DOI

[18] Y. R. Nartsissov, “The Effect of Flux Dysconnectivity Functions on Concentration Gradients Changes in a Multicomponent Model of Convectional Reaction-Diffusion by the Example of a Neurovascular Unit”, Defect and Diffusion Forum, 413 (2021), 19–28 | DOI

[19] Kopylova V.S., Boronovskii S.E., Nartsissov Ya.R., “Otsenka fraktsionnoi anizotropii kak sposob vyyavleniya patologii arterialnoi sistemy mozga”, Molekulyarnaya meditsina, 17:5, 47-52 | DOI

[20] Kopylova V.S., Boronovskii S.E., Nartsissov Ya.R., “Primenenie fraktalnogo analiza dlya otsenki arterialnoi sistemy mozga krysy”, Biofizika, 65:3 (2020), 495–504 | DOI

[21] V. S. Kopylova, S. E. Boronovskiy, Y. R. Nartsissov, “Tree topology analysis of the arterial system model”, Journal of Physics: Conference Series., 1141 (2018), 012027 | DOI

[22] V. S. Kopylova, S. E. Boronovskiy, Y. R. Nartsissov, “Fundamental constraints of vessels network architecture properties revealed by reconstruction of a rat brain vasculature”, Math. Biosci., 315 (2019), 108237 | DOI

[23] V. S. Kopylova, S. E. Boronovskiy, Y. R. Nartsissov, “Multiparametric topological analysis of reconstructed rat brain arterial system”, Phys. Biol., 16:5 (2019), 056002 | DOI

[24] Ia. R. Nartsissov, E. S. Tiukina, S. E. Boronovskii, E. V. Sheshegova, “Computer modeling of spatial-time distribution of metabolite concentrations in phantoms of biological objects by example of rat brain pial”, Biophysics (Russian Federation), 58 (2013), 703–711 | DOI

[25] Nartsissov Ya.R., Boronovskii S.E., Kopylova V.S., Mashkovtseva E.V., “Vliyanie prostranstvenno-vremennykh raspredelenii kontsentratsii oksida azota na usloviya formirovaniya gipoksii v tkanyakh”, Molekulyarnaya meditsina, 14:1, 22–25

[26] Nartsissov Ya.R., Kopylova V.S., Mashkovtseva E.V., Boronovskii S.E., “Izmenenie nestatsionarnykh gradientov gidroperekisi v ochage reoksigenatsii pod deistviem glitsina pri eksaitotoksichnosti”, Molekulyarnaya meditsina, 16:3, 37-41 | DOI

[27] C. B. Barber, D. P. Dobkin, H. Huhdanpaa, “The quickhull algorithm for convex hulls”, ACM Trans. Math. Softw., 22:4 (1996), 469–483 | DOI

[28] G. A. Dienel, “Fueling and imaging brain activation”, ASN Neuro., 4:5 (2012), 267–321 | DOI

[29] M. Soty, A. Gautier-Stein, F. Rajas, G. Mithieux, “Gut-Brain Glucose Signaling in Energy Homeostasis”, Cell Metab., 25:6 (2017), 1231–1242 | DOI

[30] W. D. Heiss, G. Rosner, “Functional recovery of cortical neurons as related to degree and duration of ischemia”, Ann. Neurol., 14:3 (1983), 294–301 | DOI

[31] E. S. Lee, G. E. Bauer, M. P. Caldwell, S. M. Santilli, “Association of artery wall hypoxia and cellular proliferation at a vascular anastomosis”, J. Surg. Res., 91:1 (2000), 32–37 | DOI

[32] T. P. Keeley, G. E. Mann, “Defining Physiological Normoxia for Improved Translation of Cell Physiology to Animal Models and Humans”, Physiol. Rev., 99:1 (2019), 161–234 | DOI

[33] D. Myung, K. Derr, P. Huie, J. Noolandi, K. P. Ta, C. N. Ta, “Glucose permeability of human, bovine, and porcine corneas in vitro”, Ophthalmic Res., 38:3 (2006), 158–163 | DOI

[34] C. D. Eggleton, A. Vadapalli, T. K. Roy, A. S. Popel, “Calculations of intracapillary oxygen tension distributions in muscle”, Mathematical Biosciences., 167:2 (2000), 123–143 | DOI

[35] A. Lucker, T. W. Secomb, B. Weber, P. Jenny, “The relative influence of hematocrit and red blood cell velocity on oxygen transport from capillaries to tissue”, Microcirculation., 24:3 (2017) | DOI

[36] Hall C.N, D. Attwell, “Assessing the physiological concentration and targets of nitric oxide in brain tissue”, J. Physiol., 586:15 (2008), 3597–3615 | DOI

[37] P. De Feo, V. Gallai, G. Mazzotta, G. Crispino, E. Torlone, G. Perriello, M. M. Ventura, F. Santeusanio, P. Brunetti, G. B. Bolli, “Modest decrements in plasma glucose concentration cause early impairment in cognitive function and later activation of glucose counterregulation in the absence of hypoglycemic symptoms in normal man”, Journal of Clinical Investigation, 82:2 (1988), 436–444 | DOI

[38] Y. R. Nartsissov, “Validation of a spatial-time concentration gradients estimation by the superposition of sphere sources diffusion fields using the finite element method”, Journal of Physics: Conference Series, 2090:1 (2021), 012007 | DOI

[39] G. C. Brown, “Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase”, Biochim. Biophys. Acta., 1504:1 (2001), 46–57 | DOI

[40] T. W. Secomb, R. Hsu, N. B. Beamer, B. M. Coull, “Theoretical simulation of oxygen transport to brain by networks of microvessels: effects of oxygen supply and demand on tissue hypoxia”, Microcirculation., 7:4 (2000), 237–247 | DOI

[41] Z. C. Feng, E. L. Roberts, Jr., T. J. Sick, M. Rosenthal, “Depth profile of local oxygen tension and blood flow in rat cerebral cortex, white matter and hippocampus”, Brain Res., 445:2 (1988), 280–288 | DOI

[42] M. L. Gyngell, T. Michaelis, D. Horstermann, H. Bruhn, W. Hanicke, K. D. Merboldt, J. Frahm, “Cerebral glucose is detectable by localized proton NMR spectroscopy in normal rat brain in Vivo”, Magn. Reson. Med., 19:2 (1991), 489–495 | DOI

[43] L. Grinberg, T. Anor, E. Cheever, J. R. Madsen, G. E. Karniadakis, “Simulation of the human intracranial arterial tree”, Philos. Trans. A Math. Phys. Eng. Sci., 367:1896 (2009), 2371–2386 | DOI

[44] O. Ndubuizu, J. C. LaManna, “Brain tissue oxygen concentration measurements”, Antioxid. Redox Signal., 9:8 (2007), 1207–1219 | DOI

[45] D. G. Lyons, A. Parpaleix, M. Roche, S. Charpak, “Mapping oxygen concentration in the awake mouse brain”, Elife., 5 (2016), 12024 | DOI

[46] T. J. Sick, P. L. Lutz, J. C. LaManna, M. Rosenthal, “Comparative brain oxygenation and mitochondrial redox activity in turtles and rats”, J. Appl. Physiol. Respir. Environ. Exerc. Physiol., 53:6 (1982), 1354–1359 | DOI

[47] W. C. Seyde, D. E. Longnecker, “Cerebral oxygen tension in rats during deliberate hypotension with sodium nitroprusside, 2-chloroadenosine, or deep isoflurane anesthesia”, Anesthesiology., 64:4 (1986), 480–485 | DOI

[48] T. W. Secomb, “Krogh-cylinder and infinite-domain models for washout of an inert diffusible solute from tissue”, Microcirculation., 22:1 (2015), 91–98 | DOI

[49] P. Boehm-Sturm, T. D. Farr, J. Adamczak, J. F. Jikeli, L. Mengler, D. Wiedermann, T. Kallur, V. Kiselev, M. Hoehn, “Vascular changes after stroke in the rat: a longitudinal study using optimized magnetic resonance imaging”, Contrast Media Mol. Imaging., 8:5 (2013), 383–392 | DOI

[50] M. Kang, S. Jin, D. Lee, H. Cho, “MRI Visualization of Whole Brain Macro- and Microvascular Remodeling in a Rat Model of Ischemic Stroke: A Pilot Study”, Sci. Rep., 10:1 (2020), 4989 | DOI