Construction of complex three-dimensional structures of the aorta of a particular patient using finite analytical formulas
Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022) no. 2, pp. 312-324.

Voir la notice de l'article provenant de la source Math-Net.Ru

We have developed a method for constructing the geometry of a morphologically realistic human aorta, including the aortic root (Valsalva sinus), thoracic aorta, aortic arch with branches, abdominal aorta with bifurcation vessels. The creation of a three-dimensional model of the human aorta is necessary when planning surgical interventions, when performing numerical modeling of blood flow in the aorta. The anatomical structure of the aorta differs in different patients, especially in the presence of various pathologies (aneurysms, stenoses, aortic dissection). Creation of an individual human aorta model based on MRI, CT images requires time-consuming manual work of a highly computer skilled specialist. Presented is a simple method of building a 3D model of the human aorta. Initially, a 3D model of the aorta (or selected section of the aorta) of one patient is created. For this purpose, an analytical 3D model of this aorta is constructed from the raw model of the aorta. To build such an analytical aorta, it is necessary to divide the aorta into characteristic sections and specify defining parameters for each section. To build a model of another patient's aorta, a base model is taken and adjusted based on the individual features of the patient's aorta structure. At that, areas of pathology (stenoses and aneurysms) are added if necessary. Correction of the basic model requires much less time and effort than creating an aortic model of a particular patient from scratch. One of the key features of the technique is ease of use, eliminating the monotonous manual labor of building an individual patient's aorta. The resulting three-dimensional model of the aorta is fully ready for 3D modeling and printing on a 3D printer. Sections of the aorta are docked with the second order of smoothness (continuous second derivative between sections of the constructed aorta).
@article{MBB_2022_17_2_a11,
     author = {A. E. Medvedev},
     title = {Construction of complex three-dimensional structures of the aorta of a particular patient using finite analytical formulas},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {312--324},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a11/}
}
TY  - JOUR
AU  - A. E. Medvedev
TI  - Construction of complex three-dimensional structures of the aorta of a particular patient using finite analytical formulas
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2022
SP  - 312
EP  - 324
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a11/
LA  - ru
ID  - MBB_2022_17_2_a11
ER  - 
%0 Journal Article
%A A. E. Medvedev
%T Construction of complex three-dimensional structures of the aorta of a particular patient using finite analytical formulas
%J Matematičeskaâ biologiâ i bioinformatika
%D 2022
%P 312-324
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a11/
%G ru
%F MBB_2022_17_2_a11
A. E. Medvedev. Construction of complex three-dimensional structures of the aorta of a particular patient using finite analytical formulas. Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022) no. 2, pp. 312-324. http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a11/

[1] A. M. Chernyavskii, M. M. Lyashenko, A. R. Sirota D. A. Tarkova, D. S. Khvan, E. I. Kretov, A. A. Prokhorikhin, D. U. Malaev, A. A. Boikov, “Obzor gibridnykh vmeshatelstv pri zabolevaniyakh dugi aorty”, Khirurgiya. Zhurnal imeni N.I. Pirogova, 2019, no. 4, 87–93 | DOI

[2] N. Sakalihasan, J-B. Michel, A. Katsargyris, H. Kuivaniemi, J-O. Defraigne, A. Nchimi, J. T. Powell, K. Yoshimura, R. Hultgren, “Abdominal aortic aneurysms”, Nature Reviews Disease Primers, 4:34 (2018), 1–22 | DOI

[3] D. Roy, C. Kauffmann, S. Delorme, S. Lerouge, G. Cloutier, G. Soulez, “A literature review of the numerical analysis of abdominal aortic aneurysms treated with endovascular stent grafts”, Computational and Mathematical Methods in Medicine, 2012 (2012), 820389, 1–16 | DOI

[4] Nenad Filipovic (ed.), Computational Modeling and Simulation Examples in Bioengineering, 1st ed., Wiley, 2021, 384 pp.

[5] C. M. Scotti, A. D. Shkolnik, S. C. Muluk, E. A. Finol, “Fluid-structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness”, BioMedical Engineering Online, 4:64 (2005), 1–22 | DOI

[6] K. K. Skripachenko, A. A. Golyadkina, K. M. Morozov, N. O. Chelnokova, N. V. Ostrovskii, I. V. Kirillova, L. Yu. Kossovich, “Biomekhanicheskii patsiento-orientirovannyi analiz vliyaniya anevrizmy na gemodinamiku grudnogo otdela aorty”, Rossiiskii zhurnal biomekhaniki, 23:4 (2019), 526–536 | DOI

[7] B. J. Doyle, A. McGloughlin T. M. Callanan, “A comparison of modelling techniques for computing wall stress in abdominal aortic aneurysms”, BioMedical Engineering Online, 6:38 (2007), 1–12 | DOI

[8] D. E. Sinitsyna, A. D. Yukhnev, D. K. Zaitsev, M. V. Turkina, “Ultrazvukovoe i chislennoe issledovanie struktury techeniya v trekhmernoi modeli bifurkatsii bryushnoi aorty”, Nauchno-tekhnicheskie vedomosti SPbGPU. Fiziko-matematicheskie nauki, 12:4 (2019), 50–60 | DOI

[9] Y. Zhang, Y. Bazilevs, S. Goswami, C. L. Bajaj, T. J.R. Hughes, “Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow”, Computer Methods in Applied Mechanics and Engineering, 196:29-30 (2007), 2943–2959 | DOI

[10] M. Coda, Advanced patient-specific modeling and analysis of complex aortic structures by means of Isogeometric Analysis, PhD Dissertation, University of Pavia, Pavia, 2019, 172 pp.

[11] Rami Haj-Ali, Gil Marom, S. B. Zekry, M. Rosenfeld, E. Raanani, “A general three-dimensional parametric geometry of the native aortic valve and root for biomechanical modeling”, Journal of Biomechanics, 45:14 (2012), 2392–2397 | DOI

[12] J. De Hart, G. W.M. Peters, P. J.G. Schreurs, F. P.T. Baaijens, “A three-dimensional computational analysis of fluid-structure interaction in the aortic valve”, Journal of Biomechanics, 36:1 (2003), 103–112 | DOI

[13] J. S. Rankin, M. C. Bone, P. M. Fries, D. Aicher, H-J. Schafers, P. S. Crooke, “A refined hemispheric model of normal human aortic valve and root geometry”, Journal of Thoracic and Cardiovascular Surgery, 146:1 (2013), 103–108 | DOI

[14] M. B. Jatene, R. Monteiro, M. H. Guimaraes, S. C. Veronezi, M. K. Koike, F. B. Jatene, A. D. Jatene, “Aortic Valve assessment. Anatomical study of 100 healthy human hearts”, Arquivos Brasileiros de Cardiologia, 73:1 (1999), 81–86 | DOI

[15] K. Cao, M. Bukac, P. Sucosky, “Three-dimensional macro-scale assessment of regional and temporal wall shear stress characteristics on aortic valve leaflets”, Computer Methods in Biomechanics and Biomedical Engineering, 19:6 (2016), 603–613 | DOI

[16] K. Cao, P. Sucosky, “Computational comparison of regional stress and deformation characteristics in tricuspid and bicuspid aortic valve leaflets”, International Journal for Numerical Methods in Biomedical Engineering, 33:3 (2017), 1–21 | DOI

[17] D. Wojciechowska, A. R. Liberski, P. Wilczek, J. Butcher, M. Scharfschwerdt, Z. Hijazi, J. Kasprzak, P. Pibarot, R. Bianco, “The optimal shape of an aortic heart valve replacement on the road to the consensus”, QScience Connect, 2017:3 (2017), 1–14 | DOI

[18] M. Thubrikar, The aortic valve, Informa Healthcare, 2012, 232 pp.

[19] A. Redaelli, E. Di Martino, A. Gamba, A. M. Procopio, R. Fumero, “Assessment of the influence of the compliant aortic root on aortic valve mechanics by means of a geometrical model”, Medical Engineering and Physics, 19:8 (1997), 696–710 | DOI

[20] D. N. Knyazev, E. S. Ustinova, “Postroenie linii peresecheniya dvukh tsilindrov v parametricheskom vide”, Tekhnicheskie nauki v Rossii i za rubezhom, materialy IV Mezhdunar. nauch. konf. (g. Moskva, yanvar 2015 g.), Buki-Vedi, M., 2015, 122–125

[21] A. E. Medvedev, P. S. Gafurova, “Analiticheskoe postroenie polnogo bronkhialnogo dereva cheloveka v norme i pri obstruktivnoi bolezni legkikh”, Matematicheskaya biologiya i bioinformatika, 14, S (2019), 162–175 | DOI

[22] A. E. Medvedev, “Metodika postroeniya nesimmetrichnogo bronkhialnogo dereva cheloveka v norme i pri patologii”, Matematicheskaya biologiya i bioinformatika, 15, S (2020), t21–t31 | DOI