Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2022_17_2_a11, author = {A. E. Medvedev}, title = {Construction of complex three-dimensional structures of the aorta of a particular patient using finite analytical formulas}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {312--324}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a11/} }
TY - JOUR AU - A. E. Medvedev TI - Construction of complex three-dimensional structures of the aorta of a particular patient using finite analytical formulas JO - Matematičeskaâ biologiâ i bioinformatika PY - 2022 SP - 312 EP - 324 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a11/ LA - ru ID - MBB_2022_17_2_a11 ER -
%0 Journal Article %A A. E. Medvedev %T Construction of complex three-dimensional structures of the aorta of a particular patient using finite analytical formulas %J Matematičeskaâ biologiâ i bioinformatika %D 2022 %P 312-324 %V 17 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a11/ %G ru %F MBB_2022_17_2_a11
A. E. Medvedev. Construction of complex three-dimensional structures of the aorta of a particular patient using finite analytical formulas. Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022) no. 2, pp. 312-324. http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a11/
[1] A. M. Chernyavskii, M. M. Lyashenko, A. R. Sirota D. A. Tarkova, D. S. Khvan, E. I. Kretov, A. A. Prokhorikhin, D. U. Malaev, A. A. Boikov, “Obzor gibridnykh vmeshatelstv pri zabolevaniyakh dugi aorty”, Khirurgiya. Zhurnal imeni N.I. Pirogova, 2019, no. 4, 87–93 | DOI
[2] N. Sakalihasan, J-B. Michel, A. Katsargyris, H. Kuivaniemi, J-O. Defraigne, A. Nchimi, J. T. Powell, K. Yoshimura, R. Hultgren, “Abdominal aortic aneurysms”, Nature Reviews Disease Primers, 4:34 (2018), 1–22 | DOI
[3] D. Roy, C. Kauffmann, S. Delorme, S. Lerouge, G. Cloutier, G. Soulez, “A literature review of the numerical analysis of abdominal aortic aneurysms treated with endovascular stent grafts”, Computational and Mathematical Methods in Medicine, 2012 (2012), 820389, 1–16 | DOI
[4] Nenad Filipovic (ed.), Computational Modeling and Simulation Examples in Bioengineering, 1st ed., Wiley, 2021, 384 pp.
[5] C. M. Scotti, A. D. Shkolnik, S. C. Muluk, E. A. Finol, “Fluid-structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness”, BioMedical Engineering Online, 4:64 (2005), 1–22 | DOI
[6] K. K. Skripachenko, A. A. Golyadkina, K. M. Morozov, N. O. Chelnokova, N. V. Ostrovskii, I. V. Kirillova, L. Yu. Kossovich, “Biomekhanicheskii patsiento-orientirovannyi analiz vliyaniya anevrizmy na gemodinamiku grudnogo otdela aorty”, Rossiiskii zhurnal biomekhaniki, 23:4 (2019), 526–536 | DOI
[7] B. J. Doyle, A. McGloughlin T. M. Callanan, “A comparison of modelling techniques for computing wall stress in abdominal aortic aneurysms”, BioMedical Engineering Online, 6:38 (2007), 1–12 | DOI
[8] D. E. Sinitsyna, A. D. Yukhnev, D. K. Zaitsev, M. V. Turkina, “Ultrazvukovoe i chislennoe issledovanie struktury techeniya v trekhmernoi modeli bifurkatsii bryushnoi aorty”, Nauchno-tekhnicheskie vedomosti SPbGPU. Fiziko-matematicheskie nauki, 12:4 (2019), 50–60 | DOI
[9] Y. Zhang, Y. Bazilevs, S. Goswami, C. L. Bajaj, T. J.R. Hughes, “Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow”, Computer Methods in Applied Mechanics and Engineering, 196:29-30 (2007), 2943–2959 | DOI
[10] M. Coda, Advanced patient-specific modeling and analysis of complex aortic structures by means of Isogeometric Analysis, PhD Dissertation, University of Pavia, Pavia, 2019, 172 pp.
[11] Rami Haj-Ali, Gil Marom, S. B. Zekry, M. Rosenfeld, E. Raanani, “A general three-dimensional parametric geometry of the native aortic valve and root for biomechanical modeling”, Journal of Biomechanics, 45:14 (2012), 2392–2397 | DOI
[12] J. De Hart, G. W.M. Peters, P. J.G. Schreurs, F. P.T. Baaijens, “A three-dimensional computational analysis of fluid-structure interaction in the aortic valve”, Journal of Biomechanics, 36:1 (2003), 103–112 | DOI
[13] J. S. Rankin, M. C. Bone, P. M. Fries, D. Aicher, H-J. Schafers, P. S. Crooke, “A refined hemispheric model of normal human aortic valve and root geometry”, Journal of Thoracic and Cardiovascular Surgery, 146:1 (2013), 103–108 | DOI
[14] M. B. Jatene, R. Monteiro, M. H. Guimaraes, S. C. Veronezi, M. K. Koike, F. B. Jatene, A. D. Jatene, “Aortic Valve assessment. Anatomical study of 100 healthy human hearts”, Arquivos Brasileiros de Cardiologia, 73:1 (1999), 81–86 | DOI
[15] K. Cao, M. Bukac, P. Sucosky, “Three-dimensional macro-scale assessment of regional and temporal wall shear stress characteristics on aortic valve leaflets”, Computer Methods in Biomechanics and Biomedical Engineering, 19:6 (2016), 603–613 | DOI
[16] K. Cao, P. Sucosky, “Computational comparison of regional stress and deformation characteristics in tricuspid and bicuspid aortic valve leaflets”, International Journal for Numerical Methods in Biomedical Engineering, 33:3 (2017), 1–21 | DOI
[17] D. Wojciechowska, A. R. Liberski, P. Wilczek, J. Butcher, M. Scharfschwerdt, Z. Hijazi, J. Kasprzak, P. Pibarot, R. Bianco, “The optimal shape of an aortic heart valve replacement on the road to the consensus”, QScience Connect, 2017:3 (2017), 1–14 | DOI
[18] M. Thubrikar, The aortic valve, Informa Healthcare, 2012, 232 pp.
[19] A. Redaelli, E. Di Martino, A. Gamba, A. M. Procopio, R. Fumero, “Assessment of the influence of the compliant aortic root on aortic valve mechanics by means of a geometrical model”, Medical Engineering and Physics, 19:8 (1997), 696–710 | DOI
[20] D. N. Knyazev, E. S. Ustinova, “Postroenie linii peresecheniya dvukh tsilindrov v parametricheskom vide”, Tekhnicheskie nauki v Rossii i za rubezhom, materialy IV Mezhdunar. nauch. konf. (g. Moskva, yanvar 2015 g.), Buki-Vedi, M., 2015, 122–125
[21] A. E. Medvedev, P. S. Gafurova, “Analiticheskoe postroenie polnogo bronkhialnogo dereva cheloveka v norme i pri obstruktivnoi bolezni legkikh”, Matematicheskaya biologiya i bioinformatika, 14, S (2019), 162–175 | DOI
[22] A. E. Medvedev, “Metodika postroeniya nesimmetrichnogo bronkhialnogo dereva cheloveka v norme i pri patologii”, Matematicheskaya biologiya i bioinformatika, 15, S (2020), t21–t31 | DOI