Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2022_17_2_a10, author = {T. S. Mikhakhanova and O. F. Voropaeva}, title = {The trigger model of the dynamics of acute and chronic aseptic inflammation}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {266--288}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a10/} }
TY - JOUR AU - T. S. Mikhakhanova AU - O. F. Voropaeva TI - The trigger model of the dynamics of acute and chronic aseptic inflammation JO - Matematičeskaâ biologiâ i bioinformatika PY - 2022 SP - 266 EP - 288 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a10/ LA - ru ID - MBB_2022_17_2_a10 ER -
%0 Journal Article %A T. S. Mikhakhanova %A O. F. Voropaeva %T The trigger model of the dynamics of acute and chronic aseptic inflammation %J Matematičeskaâ biologiâ i bioinformatika %D 2022 %P 266-288 %V 17 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a10/ %G ru %F MBB_2022_17_2_a10
T. S. Mikhakhanova; O. F. Voropaeva. The trigger model of the dynamics of acute and chronic aseptic inflammation. Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022) no. 2, pp. 266-288. http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a10/
[1] V.V. Serov, V. S. Paukov (red.), Vospalenie. Rukovodstvo dlya vrachei, Meditsina, M., 1995
[2] A. A. Yarilin, Osnovy immunologii, Uchebnik, Meditsina, M., 1999
[3] O. F. Voropaeva, T. V. Bayadilov, “Matematicheskaya model dinamiki asepticheskogo vospaleniya”, Sibirskii zhurnal industrialnoi matematiki, 23:4 (2020), 30–47
[4] S. Nagaraja, A. Wallqvist, J. Reifman, A. Y. Mitrophanov, “Computational approach to characterize causative factors and molecular indicators of chronic wound inflammation”, Journal of Immunology, 192 (2014), 1824–1834 | DOI
[5] R. Mori, T. Kondo, T. Ohshima, Y. Ishida, N. Mukaida, “Accelerated wound healing in tumor necrosis factor p55-deficient mice with reduced leukocyte infiltration”, FASEB J., 16 (2002), 963–974
[6] R. Mirza, L. A. DiPietro, T. J. Koh, “Selective and specific macrophage ablation is detrimental to wound healing in mice”, Amer. J. Pathology, 175:6 (2009), 2454–2462
[7] K. Mukai, E. Komatsu, Y. Nakajima, T. Urai, Nasruddin J. Sugama, T. Nakatani, “The effect of 17b-estradiol on cutaneous wound healing in protein-malnourished ovariectomized female mouse model”, PLoS ONE, 9:12 (2014)
[8] S. C. Pan, C. Y. Li, C. Y. Kuo, Y. Z. Kuo, W. Y. Fang, Y. H. Huang, T. C. Hsieh, H. Y. Kao, Y. Kuo, Y. R. Kang et al, “The p53-S100 A2 positive feedback loop negatively regulates epithelialization in cutaneous wound healing”, Sci. Reports, 8 (2018), 963–974
[9] Z. Deng, J. Yin, L. Wei, R. N. Kotian, S. Gao, Z. Yi, W. Xiao, W. Li, Y. Li, “The effect of earthworm extract on promoting skin wound healing”, Biosci. Reports, 38 (2018)
[10] J. Bystrom, I. Evans, J. Newson, M. Stables, I. Toor, N. van Rooijen, M. Crawford, P. Colville-Nash, S. Farrow, D. W. Gilroy, “Resolutionphase macrophages possess a unique inflammatory phenotype that is controlled by cAMP”, Blood, 112 (2008), 4117–4127
[11] L. Yang, C. X. Qiu, A. Ludlow, M. W. Ferguson, G. Brunner, “Active transforming growth factor-b in wound repair: determination using a new assay”, Amer. J. Pathology, 154 (1999), 105–111
[12] H. N. Antoniades, T. Galanopoulos, J. Neville-Golden, C. P. Kiritsy, S. E. Lynch, “p53 expression during normal tissue regeneration in response to acute cutaneous injury in swine”, J. Clin. Invest, 93 (1994), 2206–2214
[13] E. Engelhardt, A. Toksoy, M. Goebeler, S. Debus, E. B. Brocker, R. Gillitzer, “Chemokines IL-8, GROalpha, MCP-1, IP-10, and Mig are sequentially and differentially expressed during phase-specific infiltration of leukocyte subsets in human wound healing”, Amer. J. Pathology, 153 (1998), 1849–1860
[14] W. W. Kum, S. B. Cameron, R. W. Hung, S. Kalyan, A. W. Chow, “Temporal sequence and kinetics of proinflammatory and anti-inflammatory cytokine secretion induced by toxic shock syndrome toxin-1 in human peripheral blood mononuclear cells”, Infect. Immunol, 69 (2001), 7544–7549
[15] E. C. Leal, E. Carvalho, A. Tellechea, A. Kafanas, F. Tecilazich, C. Kearney, S. Kuchibhotla, M. E. Auster, E. Kokkotou, D. J. Mooney, F. W. LoGerfo, L. Pradhan-Nabzdyk, A. Veves, “Substance P promotes wound healing in diabetes by modulating inflammation and macrophage phenotype”, American Journal of Pathology, 185:6 (2015), 1638–1648 | DOI
[16] O. Dewald, G. Ren, G. D. Duerr, M. Zoerlein, C. Klemm, C. Gersch, S. Tincey, L. H. Michael, M. L. Entman, N. G. Frangogiannis, “Of mice and dogs: Species-specific differences in the inflammatory response following myocardial infarction”, Am. J. Pathol, 164 (2004), 665–677 | DOI
[17] S. Nagaraja, L. Chen, J. Zhou, Y. Zhao, D. Fine, L. A. DiPietro, J. Reifman, A. Y. Mitrophanov, “Predictive analysis of mechanistic triggers and mitigation strategies for pathological scarring in skin wounds”, Journal of Immunology, 198 (2017), 832–841 | DOI
[18] K. Safferling, T. Sutterlin, K. Westphal, C. Ernst, K. Breuhahn, M. James, D. Jager, N. Halama, N. Grabe, “Wound healing revised: A novel reepithelialization mechanism revealed by in vitro and in silico models”, Cell Biol, 203:4 (2013), 691–709 | DOI
[19] A. Y. Fouda, A. Kozak, A. Alhusban, J. A. Switzer, S. C. Fagan, “Anti-inflammatory IL-10 is upregulated in both hemispheres after experimental ischemic stroke: Hypertension blunts the response”, Experimental and Translational Stroke Medicine, 5:12 (2013) | DOI
[20] L. Pradhan, C. Nabzdyk, N. D. Andersen, F. W. LoGerfo, A. Veves, “Inflammation and neuropeptides: The connection in diabetic wound healing”, Expert. Rev. Mol. Med, 11 (2013) | DOI
[21] A. M. Zverkin, G. A. Kamenskii, S. B. Norkin, L. E. Elsgolts, “Differentsialnye uravneniya s otklonyayuschimsya argumentom”, Uspekhi matematicheskikh nauk, 17:2 (104) (1962), 61–164
[22] A. D. Myshkis, L. E. Elsgolts, “Sostoyanie i problemy teorii differentsialnykh uravnenii s otklonyayuschimsya argumentom”, Uspekhi matematicheskikh nauk, 22:2 (134) (1967), 21–57
[23] L. E. Elsgolts, S. B. Norkin, Vvedenie v teoriyu differentsialnykh uravnenii s otklonyayuschimsya argumentom, Nauka, M., 1971, 296 pp.
[24] R. R. Akhmerov, M. I. Kamenskii, A. S. Potapov, A. E. Rodkina, B. N. Sadovskii, “Teoriya uravnenii neitralnogo tipa”, Itogi nauki i tekhn. Ser. Mat. anal., 19, 1982, 55–126
[25] N. N. Krasovskii, A. N. Kotelnikova, “Sudba odnogo podkhoda k izucheniyu nasledstvennykh sistem”, Izvestiya URGU, 2004, no. 32, 12–24
[26] E. S. Vodopyanov, G. V. Demidenko, “Asimptoticheskaya ustoichivost reshenii lineinykh differentsialnykh uravnenii s zapazdyvayuschim argumentom pri vozmuschenii koeffitsientov”, Matematicheskie zametki YaGU, 18:2 (2011), 32–40
[27] S. I. Fadeev, V. V. Kogai, T. M. Khlebodarova, V. A. Likhoshvai, “O chislennom issledovanii periodicheskikh reshenii uravneniya s zapazdyvayuschim argumentom v biologicheskikh modelyakh”, Sibirskii zhurnal industrialnoi matematiki, 19:1 (2016), 94–105
[28] T. Luzyanina, J. Sieber, K. Engelborghs, G. Samaey, D. Roose, “Numerical bifurcation analysis of mathematical models with time delays with the package DDE-BIFTOOL”, Mathematical Biology and Bioinformatics, 12:2 (2017), 496–520 | DOI
[29] N. V. Pertsev, B. Yu. Pichugin, A. N. Pichugina, “Primenenie M-matrits dlya issledovaniya matematicheskikh modelei zhivykh sistem”, Matematicheskaya biologiya i bioinformatika, 13:1 (2018), 208–237 | DOI
[30] V. P. Golubyatnikov, N. E. Kirillova, “O tsiklakh v modelyakh funktsionirovaniya koltsevykh gennykh setei”, Sibirskii zhurnal chistoi i prikladnoi matematiki, 18:1 (2018), 54–63
[31] M. Kholodniok, A. Klich, M. Kubichek, M. Marek, Metody analiza nelineinykh dinamicheskikh modelei, Mir, M., 1991, 365 pp.
[32] A. I. Zobnin, O. V. Sokolova, Kompyuternaya algebra v sisteme Sage, Uchebnoe posobie, Izdatelstvo MGTU im. Baumana, M., 2011