Quantitative regularities of growth of \emph{Arthrospira platensis} batch culture
Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022) no. 1, pp. 156-170.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work focuses on the modeling the light-dependent growth of Arthrospira platensis. During the experimental study, we obtained a batch curve, which characterizes the presence of a long linear phase. We showed that the constant culture productivity is determined by the light conditions in which cells are located. The simplest model of the light-dependent growth of a batch culture is proposed. The model is based on the assumption that the specific growth rate is determined by the surface irradiation, the light absorption coefficient, and the concentration of chlorophyll $a$. Verification of the obtained equations indicates that the constant productivity is observed only in the case of a hyperbolic decrease chlorophyll $a$ content and other structural compounds of microalgal biomass. A method for rapid assessment of the concentration of photosynthetic pigments in the A. platensis culture by its absorption spectrum using the sum of Gaussian curves is proposed. Mathematical decomposition of the absorption spectrum of A. platensis was carried out, all Gaussian parameters were calculated. For the red part of the spectrum, a simple expression is presented that allows one to estimate the concentration of chlorophyll $a$ and phycobiliproteins. The native extinction coefficient of chlorophyll $a$ at 678 nm was calculated to be 65 l$\cdot$ g$^{-1}\cdot$ cm$^{-1}$. We proposed an algorithm for determining the concentration of photosynthetic pigments directly from the true absorption spectrum of the A. platensis culture without interfering with its growth processes.
@article{MBB_2022_17_1_a5,
     author = {A. S. Lelekov and D. N. Chernyshev and V. S. Klochkova},
     title = {Quantitative regularities of growth of {\emph{Arthrospira} platensis} batch culture},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {156--170},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2022_17_1_a5/}
}
TY  - JOUR
AU  - A. S. Lelekov
AU  - D. N. Chernyshev
AU  - V. S. Klochkova
TI  - Quantitative regularities of growth of \emph{Arthrospira platensis} batch culture
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2022
SP  - 156
EP  - 170
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2022_17_1_a5/
LA  - ru
ID  - MBB_2022_17_1_a5
ER  - 
%0 Journal Article
%A A. S. Lelekov
%A D. N. Chernyshev
%A V. S. Klochkova
%T Quantitative regularities of growth of \emph{Arthrospira platensis} batch culture
%J Matematičeskaâ biologiâ i bioinformatika
%D 2022
%P 156-170
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2022_17_1_a5/
%G ru
%F MBB_2022_17_1_a5
A. S. Lelekov; D. N. Chernyshev; V. S. Klochkova. Quantitative regularities of growth of \emph{Arthrospira platensis} batch culture. Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022) no. 1, pp. 156-170. http://geodesic.mathdoc.fr/item/MBB_2022_17_1_a5/

[1] T. K. Antal, Mekhanizmy adaptatsii fotosinteticheskogo apparata k nedostatku osnovnykh elementov mineralnogo pitaniya, avtoref. dis. dok. biol. nauk, M., 2018, 46 pp.

[2] G. Yu. Riznichenko, A. B. Rubin, Dinamicheskie modeli elektronnogo transporta v fotosinteze, Izd-vo Instituta kompyuternykh issledovanii, M., 2020, 332 pp. | MR

[3] H. Wu, T. Li, J. Lv, Z. Chen, J. Wu, N. Wang, H. Wu, W. Xiang, “Growth and biochemical composition characteristics of Arthrospira platensis induced by simultaneous nitrogen deficiency and seawater-supplemented medium in an outdoor raceway pond in winter”, Foods, 10 (2021) | DOI

[4] D. A.L. Marrez, M. M. Naguib, Y. Y. Sultan, Z. Y. Daw, A. M. Higazy, “Evaluation of chemical composition for Spirulina platensis in different culture media”, Res. J. Pharm. Biol. Chem. Sci, 5 (2014), 1161–1171

[5] C. Zarrouk, Contribution a l'etude d'une cyanophycee. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima (Setch et Gardner) Geitler, ph. d. these, Paris, 1966, 114 pp.

[6] I. A. Terskov, R. P. Trenkenshu, V. N. Belyanin, “Svetozavisimyi rost vodorosli Platymonas viridis v nepreryvnoi kulture”, Izvestiya Akademii nauk SSSR. Seriya biologicheskaya, 2:10 (1981), 103–108

[7] V. E. Semenenko, Katalog kultur mikrovodoroslei v kollektsiyakh SSSR, IFR, M., 1991, 231 pp.

[8] H. L. Macintyre, T. M. Kana, T. Anning, R. J. Geider, “Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria”, J. Phycol., 38 (2002), 17–38 | DOI

[9] T. V. Efimova, Deistvie spektralnogo sostava sveta na strukturnye i funktsionalnye kharakteristiki mikrovodoroslei, avtoref. dis. kand. biol. nauk, Sevastopol, 2021, 28 pp.

[10] N. A. Pronina, “Organizatsiya i fiziologicheskaya rol SO2-kontsentriruyuschego mekhanizma pri fotosinteze mikrovodoroslei”, Fiziologiya rastenii, 47:5 (2000), 801–810

[11] S. T. Dyhrman, “Nutrients and their acquisition: phosphorus physiology in microalgae”, Dev. Appl. Phycol, 6 (2016) | DOI

[12] E. Sanz-Luque, A. Chamizo-Ampudia, A. Llamas, A. Galvan, E. Fernandez, “Understanding nitrate assimilation and its regulation in microalgae”, Front. Plant. Sci, 6:899 (2015) | DOI

[13] A. E. Solovchenko, E. A. Selivanova, K. A. Chekanov, R. A. Sidorov, N. V. Nemtseva, E. S. Lobakova, “Induction of secondary carotenogenesis in new halophile microalgae from the genus Dunaliella (Chlorophyceae)”, Biochemistry (Moscow), 80:11 (2015), 1508–1513 | DOI

[14] N. Yu. Shoman, Sovmestnoe deistvie sveta, temperatury i obespechennosti azotom na skorost rosta i soderzhanie khlorofilla a u morskikh diatomovykh vodoroslei, avtoref. dis. kand. biol. nauk, Sevastopol, 2021, 23 pp.

[15] E. S. Solomonova, Otsenka fiziologicheskogo sostoyaniya mikrovodoroslei s pomoschyu tsitometricheskikh i fluorestsentnykh pokazatelei, avtoref. dis. kand. biol. nauk, Sevastopol, 2021, 23 pp.

[16] J. Monod, “The growth of bacterial cultures”, Ann. Rev. Microbiol, 3 (1949), 371–394 | DOI

[17] K. J. Flynn, “A mechanistic model for describing dynamic multi-nutrient, light, temperature interaction in phytoplankton”, J. Plan. Res, 23 (2001), 977–997 | DOI

[18] R. M. Nisbet, M. Jusup, T. Klanjscek, L. Pecquerie, “Integrating dynamic energy budget (DEB) theory with traditional bioenergetic models”, J. Experim. Biol, 215 (2012), 892–902 | DOI

[19] A. S. Lelekov, R. P. Trenkenshu, “Dvukhkomponentnaya model rosta mikrovodoroslei v plotnostate”, Matematicheskaya biologiya i bioinformatika, 16:1 (2021), 101–114 | DOI

[20] A. I. Abakumov, S. Ya. Pak, “Modelirovanie protsessa fotosinteza i otsenka dinamiki biomassy fitoplanktona na osnove modeli”, Matematicheskaya biologiya i bioinformatika, 16:2 (2021), 380–393 | DOI

[21] Yu. P. Kopytov, A. S. Lelekov, R. G. Gevorgiz, M. V. Nekhoroshev, T. M. Novikova, “Metodika kompleksnogo opredeleniya biokhimicheskogo sostava mikrovodoroslei”, Algologiya, 25:2 (2015), 35–40

[22] K. R. Naqvi, M. N. Merzlyak, T. B. Melo, “Absorption and scattering of light by suspensions of cells and subcellular particles: an analysis in terms of Kramers-Kronig relations”, Photochem. Photobiol. Sci., 3 (2004), 132–137 | DOI

[23] H. Kupper, S. Seibert, A. Parameswaran, “Fast, sensitive and inexpensive alternative to analytical pigment HPLC: quantification of chlorophylls and carotenoids in crude extracts by fitting with Gauss peak spectra”, Analyt. Chem, 79:20 (2007), 7611–7627 | DOI

[24] A. Lehmuskero, M. Skogen Chauton, T. Bostrom, “Light and photosynthetic microalgae: A review of cellular- and molecular-scale optical processes”, Progr. Oceanogr, 168 (2018), 43–56 | DOI

[25] M. N. Merzlyak, K. R. Naqvi, “On recording the true absorption and scattering spectrum of a turbid sample: application to cell suspensions of the cyanobacterium anabaena variabilis”, J. Photochem. Photobiol. B: Biology, 58 (2000), 123–129 | DOI

[26] M. N. Merzlyak, O. B. Chivkunova, I. P. Maslova, R. K. Nakvi, A. E. Solovchenko, G. L. Klyachko-Gurvich, “Spektry pogloscheniya i rasseyaniya sveta kletochnymi suspenziyami nekotorykh tsianobakterii i mikrovodoroslei”, Fiziologiya rastenii, 55:3 (2008), 464–470

[27] E. Krichen, A. Rapaport, E. Le Floc'h, E. Fouilland, “A new kinetics model to predict the growth of micro-algae subjected to fluctuating availability of light”, Algal Research, 58 (2021), 102–362 | DOI

[28] V. N. Belyanin, F. Ya. Sidko, A. P. Trenkenshu, Energetika fotosinteziruyuschei kultury mikrovodoroslei, Nauka, Novosibirsk, 1980, 136 pp.

[29] E. N. Zavorueva, V. V. Zavoruev, S. P. Krum, Labilnost pervoi fotosistemy fototrofov v razlichnykh usloviyakh okruzhayuschei sredy, Sibirskii federalnyi universitet, Krasnoyarsk, 2011, 152 pp.

[30] R. P. Trenkenshu, A. S. Lelekov, A. B. Borovkov, T. M. Novikova, “Unifitsirovannaya ustanovka dlya laboratornykh issledovanii mikrovodoroslei”, Voprosy sovremennoi algologii, 2017, no. 1 (13) (data obrascheniya: 20.05.2022) http://algology.ru/1097

[31] R. G. Gevorgiz, A. S. Malakhov, Pereschet velichiny osveschennosti fotobioreaktora v velichinu obluchennosti, OOO «Kolorit», Sevastopol, 2018, 60 pp.

[32] R. G. Gevorgiz, Kolichestvennoe opredelenie massovoi doli khlorofilla a v sukhoi biomasse Spirulina (Arthrospira) platensis North. Geitl, uchebno-metodicheskoe posobie, Sevastopol, 2017, 11 pp.

[33] R. P. Trenkenshu, A. S. Lelekov, T. M. Novikova, “Lineinyi rost morskikh mikrovodoroslei v kulture”, Morskoi biologicheskii zhurnal, 3:1 (2018), 53–60 | DOI

[34] G. S. Minyuk, I. V. Drobetskaya, R. P. Trenkenshu, O. Yu. Vyalova, “Rostovye i biokhimicheskie kharakteristiki Spirulina platensis pri razlichnykh usloviyakh azotnogo pitaniya”, Ekologiya morya, 2002, no. 62, 61–66

[35] D. Jallet, M. A. Caballero, A. A. Gallina, M. Youngblood, G. Peers, “Photosynthetic physiology and biomass partitioning in the model diatom Phaeodactylum tricornutum grown in a sinusoidal light regime”, Algal Research, 18 (2016), 51–60 | DOI

[36] B. A. Gulyaev, F. F. Litvin, “Pervaya i vtoraya proizvodnaya spektra pogloscheniya khlorofilla i soprovozhdayuschikh pigmentov v kletkakh vysshikh rastenii i vodoroslei pri 20$^\circ$S”, Biofizika, 15:4 (1970), 670–680

[37] R. R. Bidigare, M. E. Ondrusek, J. H. Morrow, D. A. Kiefer, “In-vivo absorption properties of algal pigments”, Ocean Optics X, 1302 (1990), 290–302 | DOI

[38] N. Hoepffner, S. Sathyendranath, “Effect of pigment composition on absorption properties of phytoplankton”, Mar. Ecol. Prog. Ser, 73:1 (1991), 11–23 | DOI

[39] S. W. Jeffrey, R. F.C. Mantoura, S. W. Wright, Phytoplankton pigments in oceanography: guidelines to modern methods, UNESCO, 1997, 661 pp.

[40] I. N. Stadnichuk, Fikobiliproteiny. Biologicheskaya khimiya, Mir, M., 1990, 196 pp.

[41] J. Myers, J. R. Graham, R. T. Wang, “On spectral control of pigmentation in Anacystis nidulans (Cyanophyceae)”, J. Phycol, 14:4 (1978), 513–518 | DOI

[42] D. I. Arnon, B. D. McSwain, H. Y. Tsujimoto, K. Wada, “Photochemical activity and components of membrane preparations from blue-green algae. I. Coexistence of two photosystems in relation to chlorophyll a and removal of phycocyanin”, Bioch. Biophys. Acta, 357:2 (1974), 231–245 | DOI