Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2022_17_1_a5, author = {A. S. Lelekov and D. N. Chernyshev and V. S. Klochkova}, title = {Quantitative regularities of growth of {\emph{Arthrospira} platensis} batch culture}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {156--170}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2022_17_1_a5/} }
TY - JOUR AU - A. S. Lelekov AU - D. N. Chernyshev AU - V. S. Klochkova TI - Quantitative regularities of growth of \emph{Arthrospira platensis} batch culture JO - Matematičeskaâ biologiâ i bioinformatika PY - 2022 SP - 156 EP - 170 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2022_17_1_a5/ LA - ru ID - MBB_2022_17_1_a5 ER -
%0 Journal Article %A A. S. Lelekov %A D. N. Chernyshev %A V. S. Klochkova %T Quantitative regularities of growth of \emph{Arthrospira platensis} batch culture %J Matematičeskaâ biologiâ i bioinformatika %D 2022 %P 156-170 %V 17 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2022_17_1_a5/ %G ru %F MBB_2022_17_1_a5
A. S. Lelekov; D. N. Chernyshev; V. S. Klochkova. Quantitative regularities of growth of \emph{Arthrospira platensis} batch culture. Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022) no. 1, pp. 156-170. http://geodesic.mathdoc.fr/item/MBB_2022_17_1_a5/
[1] T. K. Antal, Mekhanizmy adaptatsii fotosinteticheskogo apparata k nedostatku osnovnykh elementov mineralnogo pitaniya, avtoref. dis. dok. biol. nauk, M., 2018, 46 pp.
[2] G. Yu. Riznichenko, A. B. Rubin, Dinamicheskie modeli elektronnogo transporta v fotosinteze, Izd-vo Instituta kompyuternykh issledovanii, M., 2020, 332 pp. | MR
[3] H. Wu, T. Li, J. Lv, Z. Chen, J. Wu, N. Wang, H. Wu, W. Xiang, “Growth and biochemical composition characteristics of Arthrospira platensis induced by simultaneous nitrogen deficiency and seawater-supplemented medium in an outdoor raceway pond in winter”, Foods, 10 (2021) | DOI
[4] D. A.L. Marrez, M. M. Naguib, Y. Y. Sultan, Z. Y. Daw, A. M. Higazy, “Evaluation of chemical composition for Spirulina platensis in different culture media”, Res. J. Pharm. Biol. Chem. Sci, 5 (2014), 1161–1171
[5] C. Zarrouk, Contribution a l'etude d'une cyanophycee. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima (Setch et Gardner) Geitler, ph. d. these, Paris, 1966, 114 pp.
[6] I. A. Terskov, R. P. Trenkenshu, V. N. Belyanin, “Svetozavisimyi rost vodorosli Platymonas viridis v nepreryvnoi kulture”, Izvestiya Akademii nauk SSSR. Seriya biologicheskaya, 2:10 (1981), 103–108
[7] V. E. Semenenko, Katalog kultur mikrovodoroslei v kollektsiyakh SSSR, IFR, M., 1991, 231 pp.
[8] H. L. Macintyre, T. M. Kana, T. Anning, R. J. Geider, “Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria”, J. Phycol., 38 (2002), 17–38 | DOI
[9] T. V. Efimova, Deistvie spektralnogo sostava sveta na strukturnye i funktsionalnye kharakteristiki mikrovodoroslei, avtoref. dis. kand. biol. nauk, Sevastopol, 2021, 28 pp.
[10] N. A. Pronina, “Organizatsiya i fiziologicheskaya rol SO2-kontsentriruyuschego mekhanizma pri fotosinteze mikrovodoroslei”, Fiziologiya rastenii, 47:5 (2000), 801–810
[11] S. T. Dyhrman, “Nutrients and their acquisition: phosphorus physiology in microalgae”, Dev. Appl. Phycol, 6 (2016) | DOI
[12] E. Sanz-Luque, A. Chamizo-Ampudia, A. Llamas, A. Galvan, E. Fernandez, “Understanding nitrate assimilation and its regulation in microalgae”, Front. Plant. Sci, 6:899 (2015) | DOI
[13] A. E. Solovchenko, E. A. Selivanova, K. A. Chekanov, R. A. Sidorov, N. V. Nemtseva, E. S. Lobakova, “Induction of secondary carotenogenesis in new halophile microalgae from the genus Dunaliella (Chlorophyceae)”, Biochemistry (Moscow), 80:11 (2015), 1508–1513 | DOI
[14] N. Yu. Shoman, Sovmestnoe deistvie sveta, temperatury i obespechennosti azotom na skorost rosta i soderzhanie khlorofilla a u morskikh diatomovykh vodoroslei, avtoref. dis. kand. biol. nauk, Sevastopol, 2021, 23 pp.
[15] E. S. Solomonova, Otsenka fiziologicheskogo sostoyaniya mikrovodoroslei s pomoschyu tsitometricheskikh i fluorestsentnykh pokazatelei, avtoref. dis. kand. biol. nauk, Sevastopol, 2021, 23 pp.
[16] J. Monod, “The growth of bacterial cultures”, Ann. Rev. Microbiol, 3 (1949), 371–394 | DOI
[17] K. J. Flynn, “A mechanistic model for describing dynamic multi-nutrient, light, temperature interaction in phytoplankton”, J. Plan. Res, 23 (2001), 977–997 | DOI
[18] R. M. Nisbet, M. Jusup, T. Klanjscek, L. Pecquerie, “Integrating dynamic energy budget (DEB) theory with traditional bioenergetic models”, J. Experim. Biol, 215 (2012), 892–902 | DOI
[19] A. S. Lelekov, R. P. Trenkenshu, “Dvukhkomponentnaya model rosta mikrovodoroslei v plotnostate”, Matematicheskaya biologiya i bioinformatika, 16:1 (2021), 101–114 | DOI
[20] A. I. Abakumov, S. Ya. Pak, “Modelirovanie protsessa fotosinteza i otsenka dinamiki biomassy fitoplanktona na osnove modeli”, Matematicheskaya biologiya i bioinformatika, 16:2 (2021), 380–393 | DOI
[21] Yu. P. Kopytov, A. S. Lelekov, R. G. Gevorgiz, M. V. Nekhoroshev, T. M. Novikova, “Metodika kompleksnogo opredeleniya biokhimicheskogo sostava mikrovodoroslei”, Algologiya, 25:2 (2015), 35–40
[22] K. R. Naqvi, M. N. Merzlyak, T. B. Melo, “Absorption and scattering of light by suspensions of cells and subcellular particles: an analysis in terms of Kramers-Kronig relations”, Photochem. Photobiol. Sci., 3 (2004), 132–137 | DOI
[23] H. Kupper, S. Seibert, A. Parameswaran, “Fast, sensitive and inexpensive alternative to analytical pigment HPLC: quantification of chlorophylls and carotenoids in crude extracts by fitting with Gauss peak spectra”, Analyt. Chem, 79:20 (2007), 7611–7627 | DOI
[24] A. Lehmuskero, M. Skogen Chauton, T. Bostrom, “Light and photosynthetic microalgae: A review of cellular- and molecular-scale optical processes”, Progr. Oceanogr, 168 (2018), 43–56 | DOI
[25] M. N. Merzlyak, K. R. Naqvi, “On recording the true absorption and scattering spectrum of a turbid sample: application to cell suspensions of the cyanobacterium anabaena variabilis”, J. Photochem. Photobiol. B: Biology, 58 (2000), 123–129 | DOI
[26] M. N. Merzlyak, O. B. Chivkunova, I. P. Maslova, R. K. Nakvi, A. E. Solovchenko, G. L. Klyachko-Gurvich, “Spektry pogloscheniya i rasseyaniya sveta kletochnymi suspenziyami nekotorykh tsianobakterii i mikrovodoroslei”, Fiziologiya rastenii, 55:3 (2008), 464–470
[27] E. Krichen, A. Rapaport, E. Le Floc'h, E. Fouilland, “A new kinetics model to predict the growth of micro-algae subjected to fluctuating availability of light”, Algal Research, 58 (2021), 102–362 | DOI
[28] V. N. Belyanin, F. Ya. Sidko, A. P. Trenkenshu, Energetika fotosinteziruyuschei kultury mikrovodoroslei, Nauka, Novosibirsk, 1980, 136 pp.
[29] E. N. Zavorueva, V. V. Zavoruev, S. P. Krum, Labilnost pervoi fotosistemy fototrofov v razlichnykh usloviyakh okruzhayuschei sredy, Sibirskii federalnyi universitet, Krasnoyarsk, 2011, 152 pp.
[30] R. P. Trenkenshu, A. S. Lelekov, A. B. Borovkov, T. M. Novikova, “Unifitsirovannaya ustanovka dlya laboratornykh issledovanii mikrovodoroslei”, Voprosy sovremennoi algologii, 2017, no. 1 (13) (data obrascheniya: 20.05.2022) http://algology.ru/1097
[31] R. G. Gevorgiz, A. S. Malakhov, Pereschet velichiny osveschennosti fotobioreaktora v velichinu obluchennosti, OOO «Kolorit», Sevastopol, 2018, 60 pp.
[32] R. G. Gevorgiz, Kolichestvennoe opredelenie massovoi doli khlorofilla a v sukhoi biomasse Spirulina (Arthrospira) platensis North. Geitl, uchebno-metodicheskoe posobie, Sevastopol, 2017, 11 pp.
[33] R. P. Trenkenshu, A. S. Lelekov, T. M. Novikova, “Lineinyi rost morskikh mikrovodoroslei v kulture”, Morskoi biologicheskii zhurnal, 3:1 (2018), 53–60 | DOI
[34] G. S. Minyuk, I. V. Drobetskaya, R. P. Trenkenshu, O. Yu. Vyalova, “Rostovye i biokhimicheskie kharakteristiki Spirulina platensis pri razlichnykh usloviyakh azotnogo pitaniya”, Ekologiya morya, 2002, no. 62, 61–66
[35] D. Jallet, M. A. Caballero, A. A. Gallina, M. Youngblood, G. Peers, “Photosynthetic physiology and biomass partitioning in the model diatom Phaeodactylum tricornutum grown in a sinusoidal light regime”, Algal Research, 18 (2016), 51–60 | DOI
[36] B. A. Gulyaev, F. F. Litvin, “Pervaya i vtoraya proizvodnaya spektra pogloscheniya khlorofilla i soprovozhdayuschikh pigmentov v kletkakh vysshikh rastenii i vodoroslei pri 20$^\circ$S”, Biofizika, 15:4 (1970), 670–680
[37] R. R. Bidigare, M. E. Ondrusek, J. H. Morrow, D. A. Kiefer, “In-vivo absorption properties of algal pigments”, Ocean Optics X, 1302 (1990), 290–302 | DOI
[38] N. Hoepffner, S. Sathyendranath, “Effect of pigment composition on absorption properties of phytoplankton”, Mar. Ecol. Prog. Ser, 73:1 (1991), 11–23 | DOI
[39] S. W. Jeffrey, R. F.C. Mantoura, S. W. Wright, Phytoplankton pigments in oceanography: guidelines to modern methods, UNESCO, 1997, 661 pp.
[40] I. N. Stadnichuk, Fikobiliproteiny. Biologicheskaya khimiya, Mir, M., 1990, 196 pp.
[41] J. Myers, J. R. Graham, R. T. Wang, “On spectral control of pigmentation in Anacystis nidulans (Cyanophyceae)”, J. Phycol, 14:4 (1978), 513–518 | DOI
[42] D. I. Arnon, B. D. McSwain, H. Y. Tsujimoto, K. Wada, “Photochemical activity and components of membrane preparations from blue-green algae. I. Coexistence of two photosystems in relation to chlorophyll a and removal of phycocyanin”, Bioch. Biophys. Acta, 357:2 (1974), 231–245 | DOI