Stochastic modeling of dynamics of the spread of COVID-19 infection taking into account the heterogeneity of population according to immunological, clinical and epidemiological criteria
Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022) no. 1, pp. 43-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

Here we present a stochastic model of the spread of Covid-19 infection in a certain region. The model is a continuous-discrete random process that takes into account a number of parallel processes, such as the non-stationary influx of latently infected individuals into the region, the passage by individuals of various stages of an infectious disease, the vaccination of the population, and the re-infection of some of the recovered and vaccinated individuals. The duration of stay of individuals in various stages of an infectious disease is described using distributions other than exponential. An algorithm for numerical statistical modeling of the dynamics of the spread of infection among the population of the region based on the Monte Carlo method has been developed. To calibrate the model, we used data describing the level of seroprevalence of the population of the Novosibirsk Region in the first wave of the Covid-19 epidemic in 2020. The results of computational experiments with the model are presented for studying the dynamics of the spread of infection under vaccination of the population of the region.
@article{MBB_2022_17_1_a4,
     author = {N. V. Pertsev and K. K. Loginov and A. N. Lukashev and Yu. A. Vakulenko},
     title = {Stochastic modeling of dynamics of the spread of {COVID-19} infection taking into account the heterogeneity of population according to immunological, clinical and epidemiological criteria},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {43--81},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2022_17_1_a4/}
}
TY  - JOUR
AU  - N. V. Pertsev
AU  - K. K. Loginov
AU  - A. N. Lukashev
AU  - Yu. A. Vakulenko
TI  - Stochastic modeling of dynamics of the spread of COVID-19 infection taking into account the heterogeneity of population according to immunological, clinical and epidemiological criteria
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2022
SP  - 43
EP  - 81
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2022_17_1_a4/
LA  - ru
ID  - MBB_2022_17_1_a4
ER  - 
%0 Journal Article
%A N. V. Pertsev
%A K. K. Loginov
%A A. N. Lukashev
%A Yu. A. Vakulenko
%T Stochastic modeling of dynamics of the spread of COVID-19 infection taking into account the heterogeneity of population according to immunological, clinical and epidemiological criteria
%J Matematičeskaâ biologiâ i bioinformatika
%D 2022
%P 43-81
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2022_17_1_a4/
%G ru
%F MBB_2022_17_1_a4
N. V. Pertsev; K. K. Loginov; A. N. Lukashev; Yu. A. Vakulenko. Stochastic modeling of dynamics of the spread of COVID-19 infection taking into account the heterogeneity of population according to immunological, clinical and epidemiological criteria. Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022) no. 1, pp. 43-81. http://geodesic.mathdoc.fr/item/MBB_2022_17_1_a4/

[1] K. K. Loginov, N. V. Pertsev, “Pryamoe statisticheskoe modelirovanie rasprostraneniya epidemii na osnove stadiya-zavisimoi stokhasticheskoi modeli”, Matematicheskaya biologiya i bioinformatika, 16:2 (2021), 169–200 | DOI

[2] K. K. Loginov, N. V. Pertsev, V. A. Topchii, “Chislennoe modelirovanie rasprostraneniya epidemii na osnove stokhasticheskoi stadiya-zavisimoi modeli”, Desyataya vserossiiskaya nauchno-prakticheskaya konferentsiya po imitatsionnomu modelirovaniyu i ego primeneniyu v nauke i promyshlennosti «Imitatsionnoe modelirovanie. Teoriya i praktika» (IMMOD-2021), trudy konferentsii (elektronnoe izdanie), eds. A.M. Plotnikov, M. A. Dolmatov, E. P. Smirnova, Sankt-Peterburg, 2021, 284–291

[3] N. V. Pertsev, K. K. Loginov, V. A. Topchii, “Analiz stadiya-zavisimoi modeli epidemii, postroennoi na osnove nemarkovskogo sluchainogo protsessa”, Sibirskii zhurnal industrialnoi matematiki, 23:3 (2020), 105–122 | DOI | Zbl

[4] E. Beretta, T. Hara, W. Ma, Y. Takeuchi, “Global asymptotic stability of an SIR epidemic model with distributed time delay”, Nonlin. Anal, 47:6 (2001), 4107–4115 | DOI | MR | Zbl

[5] Y. Yuan, J. Belair, “Threshold dynamics in an SEIRS model with latency and temporary immunity”, J. Math. Biol, 69 (2014), 875–904 | DOI | MR | Zbl

[6] A. Y. Popova, E. E. Andreeva, E. A. Babura, S. V. Balakhonov, N. S. Bashketova, M. V. Bulanov, N. N. Valeullina, D. V. Goryaev, N. N. Detkovskaya, E. B. Ezhlova et al, “Features of developing SARS-CoV-2 nucleocapsid protein population-based seroprevalence during the first wave of the COVID-19 epidemic in the Russian Federation”, Russ. J. Infect. Immun, 11:2 (2021), 297–323 | DOI

[7] A. Y. Popova, V. S. Smirnov, E. B. Ezhlova, A. A. Mel'nikova, L. V. Samoilova, L. V. Lyalina, E. V. Semenova, M. A. Gurskiy, E. A. Aksenova, T. V. Arbuzova et al, “Herd immunity to SARS-CoV-2 in the Novosibirsk Region population amid the COVID-19 pandemic”, Probl. Virol, 66:4 (2021), 299–309 | DOI

[8] C. Cheng, D. Zhang, D. Dang, J. Geng, P. Zhu, M. Yuan, R. Liang, H. Yang, Y. Jin, J. Xie et al, “The incubation period of COVID-19: a global meta-analysis of 53 studies and a Chinese observation study of 11 545 patients”, Infect. Dis. Poverty, 10:119 (2021) | DOI

[9] Q. B. Lu, Y. Zhang, M. J. Liu, H. Y. Zhang, N. Jalali, A. R. Zhang, J. C. Li, H. Zhao, Q. Q. Song, T. S. Zhao et al, “Epidemiological parameters of COVID-19 and its implication for infectivity among patients in China, 1 January to 11 February 2020”, Eurosurveillance, 25:40 (2020) | DOI

[10] X. He, E. H.Y. Lau, P. Wu, X. Deng, J. Wang, X. Hao, Y. C. Lau, J. Y. Wong, Y. Guan, X. Tan et al, “Temporal dynamics in viral shedding and transmissibility of COVID-19”, Nat. Med, 26 (2020), 672–675 | DOI

[11] C. Rhee, S. Kanjilal, M. Baker, M. Klompas, Duration of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infectivity: When Is It Safe to Discontinue Isolation?, Clin. Infect. Dis, 72:8 (2021), 1467–1474 | DOI

[12] H. Y. Cheng, S. W. Jian, D. P. Liu, T. C. Ng, W. T. Huang, H. H. Lin, “Contact Tracing Assessment of COVID-19 Transmission Dynamics in Taiwan and Risk at Different Exposure Periods Before and After Symptom Onset”, JAMA Intern. Med, 180:9 (2020), 1156–1163 | DOI

[13] S. M. Hall, L. Landaverde, C. J. Gill, G. M. Yee, M. Sullivan, L. Doucette-Stamm, H. Landsberg, J. T. Platt, L. White, D. H. Hamer et al, Comparison of Anterior Nares Viral Loads in Asymptomatic and Symptomatic Individuals Diagnosed with SARS-CoV-2 in a University Screening Program, Preprint from medRxiv and bioRxiv, 2022 | DOI

[14] D. Yan, X. Zhang, C. Chen, D. Jiang, X. Liu, Y. Zhou, C. Huang, Y. Zhou, Z. Guan, C. Ding et al, “Characteristics of Viral Shedding Time in SARS-CoV-2 Infections: A Systematic Review and Meta-Analysis”, Front. Public Heal, 9 (2021) | DOI

[15] I. C. Marschner, “Estimating age-specific COVID-19 fatality risk and time to death by comparing population diagnosis and death patterns: Australian data”, BMC Med. Res. Methodol, 21:126 (2021) | DOI

[16] Phillip P. Salvatore, C. C. Lee, S. Sleweon, D. W. McCormick, L. Nicolae, K. Knipe, T. Dixon, R. Banta, I. Ogle, C. Young et al, Transmission potential of vaccinated and unvaccinated persons infected with the SARS-CoV-2 Delta variant in a federal prison, July-August 2021, Preprint from medRxiv and bioRxiv, 2021 | DOI

[17] S. Rahman, M. M. Rahman, M. Miah, M. N. Begum, M. Sarmin, M. Mahfuz, M. E. Hossain, M. Z. Rahman, M. J. Chisti, T. Ahmed et al, “COVID-19 reinfections among naturally infected and vaccinated individuals”, Sci. Rep, 12:1438 (2022) | DOI

[18] D. Y. Logunov, I. V. Dolzhikova, D. V. Shcheblyakov, A. I. Tukhvatulin, O. V. Zubkova, A. S. Dzharullaeva, A. V. Kovyrshina, N. L. Lubenets, D. M. Grousova, A. S. Erokhova et al, “Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia”, Lancet, 397:10275 (2021), 671–681 | DOI

[19] S. F. Lumley, D. O'Donnell, N. E. Stoesser, P. C. Matthews, A. Howarth, S. B. Hatch, B. D. Marsden, S. Cox, T. James, F. Warren et al, “Antibody Status and Incidence of SARS-CoV-2 Infection in Health Care Workers”, N. Engl. J. Med, 384 (2021), 533–540 | DOI

[20] P. Naaber, L. Tserel, K. Kangro, E. Sepp, V. Jurjenson, A. Adamson, L. Haljasmagi, A. P. Rumm, R. Maruste, J. Karner et al, “Dynamics of antibody response to BNT162b2 vaccine after six months: a longitudinal prospective study”, Lancet Reg. Heal. Eur, 10 (2021) | DOI

[21] D. S. Khoury, D. Cromer, A. Reynaldi, T. E. Schlub, A. K. Wheatley, J. A. Juno, K. Subbarao, S. J. Kent, J. A. Triccas, M. P. Davenport, “Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection”, Nat. Med, 27 (2021), 1205–1211 | DOI

[22] G. Kramer, Matematicheskie metody statistiki, Mir, M., 1975, 648 pp.