Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2022_17_1_a4, author = {N. V. Pertsev and K. K. Loginov and A. N. Lukashev and Yu. A. Vakulenko}, title = {Stochastic modeling of dynamics of the spread of {COVID-19} infection taking into account the heterogeneity of population according to immunological, clinical and epidemiological criteria}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {43--81}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2022_17_1_a4/} }
TY - JOUR AU - N. V. Pertsev AU - K. K. Loginov AU - A. N. Lukashev AU - Yu. A. Vakulenko TI - Stochastic modeling of dynamics of the spread of COVID-19 infection taking into account the heterogeneity of population according to immunological, clinical and epidemiological criteria JO - Matematičeskaâ biologiâ i bioinformatika PY - 2022 SP - 43 EP - 81 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2022_17_1_a4/ LA - ru ID - MBB_2022_17_1_a4 ER -
%0 Journal Article %A N. V. Pertsev %A K. K. Loginov %A A. N. Lukashev %A Yu. A. Vakulenko %T Stochastic modeling of dynamics of the spread of COVID-19 infection taking into account the heterogeneity of population according to immunological, clinical and epidemiological criteria %J Matematičeskaâ biologiâ i bioinformatika %D 2022 %P 43-81 %V 17 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2022_17_1_a4/ %G ru %F MBB_2022_17_1_a4
N. V. Pertsev; K. K. Loginov; A. N. Lukashev; Yu. A. Vakulenko. Stochastic modeling of dynamics of the spread of COVID-19 infection taking into account the heterogeneity of population according to immunological, clinical and epidemiological criteria. Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022) no. 1, pp. 43-81. http://geodesic.mathdoc.fr/item/MBB_2022_17_1_a4/
[1] K. K. Loginov, N. V. Pertsev, “Pryamoe statisticheskoe modelirovanie rasprostraneniya epidemii na osnove stadiya-zavisimoi stokhasticheskoi modeli”, Matematicheskaya biologiya i bioinformatika, 16:2 (2021), 169–200 | DOI
[2] K. K. Loginov, N. V. Pertsev, V. A. Topchii, “Chislennoe modelirovanie rasprostraneniya epidemii na osnove stokhasticheskoi stadiya-zavisimoi modeli”, Desyataya vserossiiskaya nauchno-prakticheskaya konferentsiya po imitatsionnomu modelirovaniyu i ego primeneniyu v nauke i promyshlennosti «Imitatsionnoe modelirovanie. Teoriya i praktika» (IMMOD-2021), trudy konferentsii (elektronnoe izdanie), eds. A.M. Plotnikov, M. A. Dolmatov, E. P. Smirnova, Sankt-Peterburg, 2021, 284–291
[3] N. V. Pertsev, K. K. Loginov, V. A. Topchii, “Analiz stadiya-zavisimoi modeli epidemii, postroennoi na osnove nemarkovskogo sluchainogo protsessa”, Sibirskii zhurnal industrialnoi matematiki, 23:3 (2020), 105–122 | DOI | Zbl
[4] E. Beretta, T. Hara, W. Ma, Y. Takeuchi, “Global asymptotic stability of an SIR epidemic model with distributed time delay”, Nonlin. Anal, 47:6 (2001), 4107–4115 | DOI | MR | Zbl
[5] Y. Yuan, J. Belair, “Threshold dynamics in an SEIRS model with latency and temporary immunity”, J. Math. Biol, 69 (2014), 875–904 | DOI | MR | Zbl
[6] A. Y. Popova, E. E. Andreeva, E. A. Babura, S. V. Balakhonov, N. S. Bashketova, M. V. Bulanov, N. N. Valeullina, D. V. Goryaev, N. N. Detkovskaya, E. B. Ezhlova et al, “Features of developing SARS-CoV-2 nucleocapsid protein population-based seroprevalence during the first wave of the COVID-19 epidemic in the Russian Federation”, Russ. J. Infect. Immun, 11:2 (2021), 297–323 | DOI
[7] A. Y. Popova, V. S. Smirnov, E. B. Ezhlova, A. A. Mel'nikova, L. V. Samoilova, L. V. Lyalina, E. V. Semenova, M. A. Gurskiy, E. A. Aksenova, T. V. Arbuzova et al, “Herd immunity to SARS-CoV-2 in the Novosibirsk Region population amid the COVID-19 pandemic”, Probl. Virol, 66:4 (2021), 299–309 | DOI
[8] C. Cheng, D. Zhang, D. Dang, J. Geng, P. Zhu, M. Yuan, R. Liang, H. Yang, Y. Jin, J. Xie et al, “The incubation period of COVID-19: a global meta-analysis of 53 studies and a Chinese observation study of 11 545 patients”, Infect. Dis. Poverty, 10:119 (2021) | DOI
[9] Q. B. Lu, Y. Zhang, M. J. Liu, H. Y. Zhang, N. Jalali, A. R. Zhang, J. C. Li, H. Zhao, Q. Q. Song, T. S. Zhao et al, “Epidemiological parameters of COVID-19 and its implication for infectivity among patients in China, 1 January to 11 February 2020”, Eurosurveillance, 25:40 (2020) | DOI
[10] X. He, E. H.Y. Lau, P. Wu, X. Deng, J. Wang, X. Hao, Y. C. Lau, J. Y. Wong, Y. Guan, X. Tan et al, “Temporal dynamics in viral shedding and transmissibility of COVID-19”, Nat. Med, 26 (2020), 672–675 | DOI
[11] C. Rhee, S. Kanjilal, M. Baker, M. Klompas, Duration of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infectivity: When Is It Safe to Discontinue Isolation?, Clin. Infect. Dis, 72:8 (2021), 1467–1474 | DOI
[12] H. Y. Cheng, S. W. Jian, D. P. Liu, T. C. Ng, W. T. Huang, H. H. Lin, “Contact Tracing Assessment of COVID-19 Transmission Dynamics in Taiwan and Risk at Different Exposure Periods Before and After Symptom Onset”, JAMA Intern. Med, 180:9 (2020), 1156–1163 | DOI
[13] S. M. Hall, L. Landaverde, C. J. Gill, G. M. Yee, M. Sullivan, L. Doucette-Stamm, H. Landsberg, J. T. Platt, L. White, D. H. Hamer et al, Comparison of Anterior Nares Viral Loads in Asymptomatic and Symptomatic Individuals Diagnosed with SARS-CoV-2 in a University Screening Program, Preprint from medRxiv and bioRxiv, 2022 | DOI
[14] D. Yan, X. Zhang, C. Chen, D. Jiang, X. Liu, Y. Zhou, C. Huang, Y. Zhou, Z. Guan, C. Ding et al, “Characteristics of Viral Shedding Time in SARS-CoV-2 Infections: A Systematic Review and Meta-Analysis”, Front. Public Heal, 9 (2021) | DOI
[15] I. C. Marschner, “Estimating age-specific COVID-19 fatality risk and time to death by comparing population diagnosis and death patterns: Australian data”, BMC Med. Res. Methodol, 21:126 (2021) | DOI
[16] Phillip P. Salvatore, C. C. Lee, S. Sleweon, D. W. McCormick, L. Nicolae, K. Knipe, T. Dixon, R. Banta, I. Ogle, C. Young et al, Transmission potential of vaccinated and unvaccinated persons infected with the SARS-CoV-2 Delta variant in a federal prison, July-August 2021, Preprint from medRxiv and bioRxiv, 2021 | DOI
[17] S. Rahman, M. M. Rahman, M. Miah, M. N. Begum, M. Sarmin, M. Mahfuz, M. E. Hossain, M. Z. Rahman, M. J. Chisti, T. Ahmed et al, “COVID-19 reinfections among naturally infected and vaccinated individuals”, Sci. Rep, 12:1438 (2022) | DOI
[18] D. Y. Logunov, I. V. Dolzhikova, D. V. Shcheblyakov, A. I. Tukhvatulin, O. V. Zubkova, A. S. Dzharullaeva, A. V. Kovyrshina, N. L. Lubenets, D. M. Grousova, A. S. Erokhova et al, “Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia”, Lancet, 397:10275 (2021), 671–681 | DOI
[19] S. F. Lumley, D. O'Donnell, N. E. Stoesser, P. C. Matthews, A. Howarth, S. B. Hatch, B. D. Marsden, S. Cox, T. James, F. Warren et al, “Antibody Status and Incidence of SARS-CoV-2 Infection in Health Care Workers”, N. Engl. J. Med, 384 (2021), 533–540 | DOI
[20] P. Naaber, L. Tserel, K. Kangro, E. Sepp, V. Jurjenson, A. Adamson, L. Haljasmagi, A. P. Rumm, R. Maruste, J. Karner et al, “Dynamics of antibody response to BNT162b2 vaccine after six months: a longitudinal prospective study”, Lancet Reg. Heal. Eur, 10 (2021) | DOI
[21] D. S. Khoury, D. Cromer, A. Reynaldi, T. E. Schlub, A. K. Wheatley, J. A. Juno, K. Subbarao, S. J. Kent, J. A. Triccas, M. P. Davenport, “Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection”, Nat. Med, 27 (2021), 1205–1211 | DOI
[22] G. Kramer, Matematicheskie metody statistiki, Mir, M., 1975, 648 pp.