Interaction of a polaron with a trap. Influence of adiabaticity
Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022) no. 1, pp. 28-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

A lattice model of the interaction of a polaron with a stationary trap is considered in this work. For estimation of an electron-phonon interaction we used the Su–Schrieffer–Heeger approximation, which is more typical for DNA. The trap is localized at a lattice site with energy $U0$. Depending on the depth of the trap, there are two mechanisms for the interaction of the polaron with the trap. For a shallow trap, the interaction is adiabatic, and the trap does not capture the wave function. For a deeper trap, the dynamics of the interaction of the charge with the trap is determined by the nonadiabaticity of the process with the participation of excited electronic states. In a narrow range of values of the trap depth $-0.6\le U\le -0.4$, a polaron is completely captured by the trap, and a stationary polaron is formed on the trap. For deeper traps, for $U -0.6$, the polaron is not captured by the trap, and the wave function either tunnels through the trap or is reflected from it. The phase of the wave function provides useful information about the mechanism of interaction between the polaron and the trap.
@article{MBB_2022_17_1_a3,
     author = {G. A. Vinogradov},
     title = {Interaction of a polaron with a trap. {Influence} of adiabaticity},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {28--42},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2022_17_1_a3/}
}
TY  - JOUR
AU  - G. A. Vinogradov
TI  - Interaction of a polaron with a trap. Influence of adiabaticity
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2022
SP  - 28
EP  - 42
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2022_17_1_a3/
LA  - ru
ID  - MBB_2022_17_1_a3
ER  - 
%0 Journal Article
%A G. A. Vinogradov
%T Interaction of a polaron with a trap. Influence of adiabaticity
%J Matematičeskaâ biologiâ i bioinformatika
%D 2022
%P 28-42
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2022_17_1_a3/
%G ru
%F MBB_2022_17_1_a3
G. A. Vinogradov. Interaction of a polaron with a trap. Influence of adiabaticity. Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022) no. 1, pp. 28-42. http://geodesic.mathdoc.fr/item/MBB_2022_17_1_a3/

[1] S. V. Rakhmanova, E. M. Conwell, “Polaron Motion in DNA”, J. Phys. Chem. B, 105:10 (2001), 2056–2061 | DOI

[2] J. C. Genereux, J. K. Barton, “Mechanisms for DNA Charge Transport”, Chem. Rev. 2010, 110:3, 1642–1662 | DOI

[3] V. M. Kucherov, C. D. Kinz-Thompson, E. M. Conwell, “Polarons in DNA Oligomers”, J. Phys. Chem., 114:3 (2010), 1663–1666 | DOI

[4] T. Yu. Astakhova, V. N. Likhachev, G. A. Vinogradov, “Polaron on a one-dimensional lattice: II. A moving polaron”, Russ. J. Phys. Chem. B, 7:5 (2013), 521–533 | DOI

[5] H. Yamada, K. Iguchi, “Some Effective Tight-Binding Models for Electrons in DNA Conduction: A Review”, Advances in Condensed Matter Physics, 2010 (2010), 380710 | DOI

[6] A. Johansson, Stafström S., “Soliton and polaron transport in trans-polyacetylene”, Phys. Rev. B., 65 (2002), 045207 | DOI

[7] C. Q. Wu, “Dynamics of polaron in polymers”, Synthetic Metals., 152:1-3 (2005), 493–496 | DOI

[8] T. Yu. Astakhova, V. A. Kashin, V. N. Likhachev, G. A. Vinogradov, “Polaron Dynamics on the Nonlinear Lattice in the Su-Schrieffer-Heeger Approximation”, Exact and Approximate Solutions. Acta Physica Polonica A, 129:3 (2016), 334–339 | DOI

[9] J. A. Berashevich, V. Apalkov, T. Chakraborty, “Polaron tunneling dynamics of a linear polymer of nucleotides”, Journal of Physics: Condensed Matter, 20 (2007), 075104 | DOI

[10] B. Zheng, J. Wu, W. Sun, C. Liu, “Trapping and hopping of polaron in DNA periodic stack”, Chemical Physics Letters, 425 (2006), 123–127 | DOI

[11] M. R. Singh, “Polaron transport mechanism in DNA”, Journal of Biomaterials Science, Polymer Edition, 15 (2004), 1533–1544 | DOI

[12] N. S. Fialko, V. D. Lakhno, “Nonlinear dynamics of excitations in DNA”, Physics Letters A, 278:1-2 (2000), 108–112 | DOI

[13] V. D. Lakhno, N. S. Fialko, “Long-Range Charge Transfer in DNA”, Regul. Chaotic Dyn., 7:3 (2002), 299–313 | DOI | MR | Zbl

[14] Y. Jiang, T. Nongnual, L. Gross, J. McNeil, “Nanoscopy of single charge carrier jumps in a conjugated polymer nanoparticle”, J. Phys. Chem., 122 (2018), 1376–1383 | DOI

[15] S. Asaoka, N. Takeda, T. Iyoda, A. R. Cook, J. R. Miller, “Electron and hole transport to trap groups at the ends of conjugated polyfluorenes”, J. Am. Chem. Soc., 130 (2008), 11912–11920 | DOI

[16] Y. D. Wang, X. G. Zhang, Y. Meng, B. Di, Y. L. Zhang, Z. An, “Dynamic recombination of polaron pair with impurity in conjugated polymers”, Organic Electronics., 49 (2017), 286–291 | DOI

[17] J. P. Hague, P. E. Kornilovitch, A. S. Alexandrov, “Trapping of lattice polarons by impurities”, Physical Review B, 78 (2008), 092302 | DOI

[18] J. Sun, Y. Zhao, W. Z. Liang, “Self-trapping of polarons with off-diagonal coupling”, Physical Review B, 79 (2009), 155112 | DOI

[19] J. H. Ojeda, R. P.A. Lima, F. Dominguez-Adame, P. A. Orellana, “Trapping and motion of polarons in weakly disordered DNA molecules”, Journal of Physics: Condensed Matter, 21 (2009), 285105 | DOI

[20] L. A. Ribeiro, S. S. de Brito, P. H.D. Neto, “Trap-assisted charge transport at conjugated polymer interfaces”, Chemical Physics Letters., 644 (2016), 121–126 | DOI

[21] A. N. Korshunova, V. D. Lakhno, “The Peculiarities of Polaron Motion in the Molecular Polynucleotide Chains of Finite Length In The Presence Of Localized Excitations in the Chain”, Mathematical Biology and Bioinformatics., 12:1 (2017), 204–223 | DOI

[22] W. P. Su, J. R. Schrieffer, A. J. Heeger, “Solitons in polyacetylene”, Phys. Rev. Lett. 1979, 42:25, 1698–1701 | DOI

[23] W. P. Su, J. R. Schrieffer, “Soliton dynamics in polyacetylene”, Proc. Natl. Acad. Sci. U.S.A., 77:10 (1980), 5626–5629 | DOI

[24] W. P. Su, J. R. Schrieffer, A. J. Heeger, “Soliton excitations in polyacetylene”, Phys. Rev. B, 22:4 (1980), 2099–2105 | DOI

[25] E. J. Meier, F. A. An, B. Gadway, “Observation of the topological soliton state in the Su-Schrieffer-Heeger model”, Nature Communications, 7 (2016), 13986 | DOI

[26] D. Bohm, Quantum Theory, Prentice-Hall, New York, 1952

[27] E. M. Conwell, Basko D. M., “Hole traps in DNA”, J. Am. Chem. Soc., 123:46 (2001), 11441 | DOI

[28] E. M. Conwell, J. H. Park, H. Y. Choi, “Polarons in DNA: Transition from guanine to adenine transport”, J. Phys. Chem. B, 109 (2005), 9760 | DOI

[29] G. Zhang, P. Cui, J. Wu, Ch. Liu, “Structural fluctuation effect on the polaron in DNA”, Physica B, 404 (2009), 1485 | DOI

[30] H. Zhao, Y. Yao, Zh. An, Ch. Q. Wu, “Dynamics of polarons in conjugated polymers: An adaptive time-dependent density-matrix renormalization-group study”, Phys. Rev. B, 78:3 (2008), 035209 | DOI

[31] V. N. Likhachev, G. A. Vinogradov, “Polaron on a lattice with a trap in the Su-Schrieffer-Heeger approximation”, Russ. J. Phys. Chem B., 14:2 (2020), 222 | DOI

[32] R. Meng, S. Yin, Y. Zheng, L. Yang, Sh. Xie, A. Saxena, “Phase-breaking effect on polaron transport in organic conjugated polymers”, Organic Electronics, 49 (2017), 33–38 | DOI