Coronavirus genus recognition based on prototype virus variants
Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022) no. 1, pp. 10-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

Method named as variant approach to recognizing genus of coronavirus that is based on frequency of codon distribution in viral ORF1ab and genes of structural proteins (S, M and N) was proposed in the work. This method uses modified statistics whose efficiency was demonstrated earlier for flavivirus species recognition. To recognize genus of coronavirus the variant approach considers both various combinations of several structural coronavirus genes and individual structural genes. Finally, coronavirus genus is determined in the result of analysis of all variants considered. The method proposed was developed with the help of learning sample from prototype viral variants of Alphacoronavirus, Betacoronavirus, Deltacoronavirus and Gammacoronavirus genus. Application of the variant approach to recognizing genus of coronavirus has demonstrated the approach high assurance at level of 95%. Among all variants of joint analysis, the most reliability (98%) in recognizing genus has been achieved if codon frequency of the ORF1ab was used. Variant approach has revealed a phenomenon of mosaic structure in coronavirus genomes, i.e., when the results of genus recognition for a few genes differ from final conclusion about coronavirus genus. It seems that such phenomenon reflects homologous recombinations of the genes between various species of the coronaviruses and plasticity of their genomes in evolutionary processes.
@article{MBB_2022_17_1_a1,
     author = {M. B. Chaley and V. A. Kutyrkin},
     title = {Coronavirus genus recognition based on prototype virus variants},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {10--27},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2022_17_1_a1/}
}
TY  - JOUR
AU  - M. B. Chaley
AU  - V. A. Kutyrkin
TI  - Coronavirus genus recognition based on prototype virus variants
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2022
SP  - 10
EP  - 27
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2022_17_1_a1/
LA  - ru
ID  - MBB_2022_17_1_a1
ER  - 
%0 Journal Article
%A M. B. Chaley
%A V. A. Kutyrkin
%T Coronavirus genus recognition based on prototype virus variants
%J Matematičeskaâ biologiâ i bioinformatika
%D 2022
%P 10-27
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2022_17_1_a1/
%G ru
%F MBB_2022_17_1_a1
M. B. Chaley; V. A. Kutyrkin. Coronavirus genus recognition based on prototype virus variants. Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022) no. 1, pp. 10-27. http://geodesic.mathdoc.fr/item/MBB_2022_17_1_a1/

[1] A. F. Schalk, M. C. Hawn, “An apparently new respiratory disease of baby chicks”, J. Am. Vet. Med. Assoc, 78 (1931), 413–423

[2] M. Yu. Schelkanov, A. Yu. Popova, V. G. Dedkov, V. G. Akimkin, V. V. Maleev, “Istoriya izucheniya i sovremennaya klassifikatsiya koronavirusov (Nidovirales: Coronaviridae)”, Infektsiya i immunitet, 10:2 (2020), 221–246 | DOI

[3] A. B. Khaitovich, “Koronavirusy (taksonomiya, struktura virusa)”, Krymskii zhurnal eksperimentalnoi i klinicheskoi meditsiny, 10:3 (2020), 69–81 | DOI

[4] D. K. Lvov, S. V. Alkhovskii, “Istoki pandemii COVID-19: ekologiya i genetika koronavirusov (Betacoronavirus: Coronaviridae) SARS-CoV, SARS-CoV-2 (podrod Sarbecovirus), MERS-CoV (podrod Merbecovirus)”, Voprosy virusologii, 65:2 (2020), 62–70 | DOI

[5] D. K. Lvov, S. V. Alkhovskii, L. V. Kolobukhina, E. I. Burtseva, “Etiologiya epidemicheskoi vspyshki COVID-19 v g. Ukhan (provintsiya Khubei, Kitaiskaya Narodnaya Respublika), assotsiirovannoi s virusom 2019-nCoV (Nidovirales, Coronaviridae, Coronavirinae, Betacoronavirus, podrod Sarbecovirus): uroki epidemii SARS-CoV”, Voprosy virusologii, 65:1 (2020), 6–15 | DOI | MR

[6] King A. M.Q., M. J. Adams, E. B. Carstens, E. J. Lefkowitz (eds.), Virus Taxonomy. Classification and Nomenclature of Viruses. Ninth Report of the International Committee on Taxonomy of Viruses, Elsevier Academic Press, 2011, 1338 pp.

[7] K. Bukhari, G. Mulley, A. A. Gulyaeva, L. Zhao, G. Shu, J. Jiang, B. W. Neuman, “Description and initial characterization of metatranscriptomic nidovirus-like genomes from the proposed new family Abyssoviridae, and from a sister group to the Coronavirinae, the proposed genus Alphaletovirus”, Virology, 524 (2018), 160–171 | DOI

[8] J. Ziebuhr, R. S. Baric, S. Baker, R. J. de Groot, C. Drosten, A. Gulyaeva, B. L. Haagmans, B. W. Neuman, S. Perlman, L. L.M. Poon, I. Sola, A. E. Gorbalenya, Reorganization of the family Coronaviridae into two families, Coronaviridae (including the current subfamily Coronavirinae and the new subfamily Letovirinae) and the new family Tobaniviridae (accommodating the current subfamily Torovirinae and three other subfamilies), revision of the genus rank structure and introduction of a new subgenus rank, Proposal 2017.013S (08.08.2018) for International Committee on Taxonomy of Viruses | MR

[9] B. W. Neuman, B. D. Adair, C. Yoshioka, J. D. Quispe, G. O.P. Kuhn, R. A. Milligan, M. Yeager, M. J. Buchmeier, “Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy”, J. Virol, 80:16 (2006), 7918–7928 | DOI

[10] J. Carter, V. Saunders (eds.), Virology: principles and applications, John Wiley Sons Ltd, Chichester, England, 2007, 358 pp. | DOI

[11] Y. Chen, Q. Liu, D. Guo, “Emerging coronaviruses: Genome structure, replication, and pathogenesis”, J. Med. Virol, 92 (2020), 418–423 | DOI

[12] Y. Ma, L. Wu, N. Shaw, Y. Gao, J. Wang, Y. Sun, Z. Lou, L. Yan, R. Zhang, Z. Rao, “Structural basis and functional analysis of the SARS coronavirus nspl4-nspl0 complex”, PNAS, 112:30 (2015), 9436–9441 | DOI

[13] D. Cavanagh, K. Mawditt, A. Adzharet, R. E. Gough, J. P. Picault, C. J. Naylor, D. Haydon, K. Shaw, P. Britton, Does IBV change slowly despite the capacity of the spike protein to vary greatly?, Adv. Exp. Med. Biol, 440 (1998), 729–734 | DOI

[14] K. Pyrc, R. Dijkman, L. Deng, M. F. Jebbink, H. A. Ross, B. Berkhout, L. der Hoek, “Mosaic structure of human coronavirus NL63, one thousand years of evolution”, J. Mol. Biol, 364 (2006), 964–973 | DOI

[15] S. Su, G. Wong, W. Shi, J. Liu, A. C.K. Lai, J. Zhou, W. Liu, Y. Bi, G. F. Gao, “Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses”, Trends in Microbiology, 24:6 (2016), 490–502 | DOI

[16] V-V. Edara, B. A. Pinsky, M. S. Suthar, L. Lai, M. E. Davis-Gardner, K. Floyd, M. W. Flowers, J. Wrammert, L. Hussaini, C. Rose Ciric et al, “Infection and vaccine-induced neutralizing-antibody responses to the SARS-CoV-2 B.1.617 Variants”, N. Engl. J. Med, 385:7 (2021), 664–666 | DOI

[17] S. W. Long, R. J. Olsen, P. A. Christensen, S. Subedi, R. Olson, J. J. Davis, M. Ojeda Saavedra, P. Yerramilli, L. Pruitt, K. Reppond, “Sequence Analysis of 20,453 Severe Acute Respiratory Syndrome coronavirus 2 genomes from the Houston metropolitan area identifies the emergence and widespread distribution of multiple isolates of all major variants of concern”, Am. J. Pathol, 191:6 (2021), 983–992 | DOI

[18] N. I. Borisova, I. A. Kotov, A. A. Kolesnikov, V. V. Kaptelova, A. S. Speranskaya, L. Yu. Kondrasheva, E. V. Tivanova, K. F. Khafizov, V. G. Akimkin, “Monitoring rasprostraneniya variantov SARSCoV-2 (Coronaviridae: Coronavirinae: Betacoronavirus; Sarbecovirus) na territorii Moskovskogo regiona s pomoschyu targetnogo vysokoproizvoditelnogo sekvenirovaniya”, Voprosy virusologii, 66:4 (2021), 269–278 | DOI | MR

[19] M. B. Chalei, Zh. S. Tyulko, V. A. Kutyrkin, “Raspoznavanie vidov flavivirusov na osnove kodiruyuschikh posledovatelnostei poliproteinov”, Matematicheskaya biologiya i bioinformatika, 14:2 (2019), 533–542 | DOI

[20] M. B. Chalei, Zh. S. Tyulko, V. A. Kutyrkin, “Issledovanie struktury kodirovaniya ORF1ab, S, M i N genov koronavirusov”, Matematicheskaya biologiya i bioinformatika, 15:2 (2020), 441–454 | DOI

[21] M. M.C. Lai, “Recombination in large RNA viruses: Coronaviruses”, Seminars in Virology, 7:6 (1996), 381–388 | DOI

[22] Y. Tao, M. Shi, C. Chommanard, K. Queen, J. Zhang, W. Markotter, I. V. Kuzmin, E. C. Holmes, S. Tong, “Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history”, Journal of Virology, 91:5 (2017), e01953, 16 pp. | DOI

[23] H. K.H. Luk, X. Li, J. Fung, S. K.P. Lau, P. C.Y. Woo, “Molecular epidemiology, evolution and phylogeny of SARS coronavirus”, Infection, Genetics and Evolution, 71 (2019), 21–30 | DOI

[24] GenBank, https://ftp.ncbi.nlm.nih.gov/genbank/ (accessed 20.12.2021)