A software package for the modeling of electrophysiological activity data
Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022) no. 1, pp. 1-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

A complex of programs has been developed for computer modeling of multichannel time series recorded in various experiments on electromagnetic fields created by the human body. Sets of coordinates and directions of sensors for magnetic encephalographs of several types, electroencephalographs and magnetic cardiographs are used as models of devices. To study the human brain, magnetic resonance tomograms are used as head models; to study the heart, a body model in the form of a half-space with a flat boundary is used. The sources are placed in the model space, for them the direct problem is solved in the physical model corresponding to the device used. For a magnetic encephalograph and an electroencephalograph, an equivalent current dipole model in a spherical conductor is used, for a magnetic cardiograph, an equivalent current dipole model in a flat conductor or a magnetic dipole model is used. For each source, a time dependence is set and a multichannel time series is calculated. Then the time series from all sources are summed and the noise component is added. The program consists of three modules: an input-output module, a calculation module and a visualization module. The input-output module is responsible for loading device models, brain models, and field source parameters. The calculation module is responsible for directly calculating the field and transforming coordinates between the index system and the head system. The visualization module is responsible for the image of the brain model, the position of the field sources, a graphical representation of the amplitude-time dependence of the field sources and the calculated values of the total field. The user interface has been developed. The software package provides: interactive placement of field sources in the head or body space and editing of the amplitude-time dependence; batch loading of a large number of sources; noise modeling; simulation of low-channel planar magnetometers of various orders, specifying the shape of the device, the number of sensors and their parameters. Magnetic and electric fields produced by sources in the brain areas responsible for processing speech stimuli are considered. The resulting multichannel signal can be used to test various data analysis methods and for the experiment planning.
@article{MBB_2022_17_1_a0,
     author = {A. I. Boyko and S. D. Rykunov and M. N. Ustinin},
     title = {A software package for the modeling of electrophysiological activity data},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {1--9},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2022_17_1_a0/}
}
TY  - JOUR
AU  - A. I. Boyko
AU  - S. D. Rykunov
AU  - M. N. Ustinin
TI  - A software package for the modeling of electrophysiological activity data
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2022
SP  - 1
EP  - 9
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2022_17_1_a0/
LA  - ru
ID  - MBB_2022_17_1_a0
ER  - 
%0 Journal Article
%A A. I. Boyko
%A S. D. Rykunov
%A M. N. Ustinin
%T A software package for the modeling of electrophysiological activity data
%J Matematičeskaâ biologiâ i bioinformatika
%D 2022
%P 1-9
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2022_17_1_a0/
%G ru
%F MBB_2022_17_1_a0
A. I. Boyko; S. D. Rykunov; M. N. Ustinin. A software package for the modeling of electrophysiological activity data. Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022) no. 1, pp. 1-9. http://geodesic.mathdoc.fr/item/MBB_2022_17_1_a0/

[1] Andra W., Nowak H. (ed.), Magnetism in medicine, a handbook, Wiley-VCH, 2007, 630 pp.

[2] M. Hamalainen, R. Hari, R. J. Ilmoniemi, J. Knuutila, O. V. Lounasmaa, “Magnitoencephalography theory, instrumentation, and applications to noninvasive studies of the working human brain”, Reviews of Modern Physics, 65:2 (1993) | DOI

[3] J. D. Lewine, W. W. Orrison, “Magnetic source imaging: Basic principles and applications in neuroradiology”, Academic Radiology, 2:5 (1995), 436–440 | DOI

[4] U. Ribary, A. A. Ioannides, K. D. Singh, R. Hasson, J. P. Bolton, F. Lado, A. Mogilner, R. Llinas, “Magnetic field tomography of coherent thalamocortical 40-Hz oscillations in humans”, Proceedings of the National Academy of Sciences, 88:24 (1991), 11037–11041 | DOI

[5] J. Sarvas, “Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem”, Physics in Medicine and Biology, 32:1 (1987), 11–22 | DOI

[6] A. Gramfort, T. Papadopoulo, E. Olivi, M. Clerc, “OpenMEEG: opensource software for quasistatic bioelectromagnetics”, BioMed Eng. OnLine, 9 (2010) | DOI

[7] F. Tadel, S. Baillet, J. C. Mosher, D. Pantazis, R. M. Leahy, “Brainstorm: A User-Friendly Application for MEG/EEG Analysis”, Computational Intelligence and Neuroscience, 2011 (2011) | DOI | Zbl

[8] R. Oostenveld, P. Fries, E. Maris, J. M. Schoffelen, “FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data”, Computational Intelligence and Neuroscience, 2011 (2011) | DOI

[9] L. B.N. Hinkley, C. L. Dale, C. Cai, J. Zumer, S. Dalal, A. Findlay, K. Sekihara, S. S. Nagarajan, “NUTMEG: Open Source Software for M/EEG Source Reconstruction”, Frontiers in Neuroscience, 14 (2020) | DOI

[10] B. N. Cuffin, D. Cohen, “Magnetic Fields of a Dipole in Special Volume Conductor Shapes”, IEEE Transactions on Biomedical Engineering, BME-24:4 (1977), 372–381 | DOI

[11] M. X. Huang, J. C. Mosher, R. M. Leahy, “A sensor-weighted overlapping-sphere head model and exhaustive head model comparison for MEG”, Physics in Medicine and Biology, 44:2 (1999), 423–440 | DOI

[12] G. Nolte, “The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors”, Physics in Medicine and Biology, 48:22 (2003), 3637–3652 | DOI

[13] R. R. Llinas, M. N. Ustinin, “Frequency-pattern functional tomography of magnetoencephalography data allows new approach to the study of human brain organization”, Front. Neural Circuits, 8 (2014) | DOI

[14] R. R. Llinas, M. N. Ustinin, S. D. Rykunov, A. I. Boyko, V. V. Sychev, K. D. Walton, G. M. Rabello, J. Garcia, “Reconstruction of human brain spontaneous activity based on frequency-pattern analysis of magnetoencephalography data”, Front. Neurosci, 9 (2015) | DOI

[15] J. C. Mosher, R. M. Leahy, P. S. Lewis, “EEG and MEG: forward solutions for inverse methods”, IEEE Transactions on Biomedical Engineering, 46:3 (1999), 245–259 | DOI | MR

[16] M. W. Garrett, “Calculation of fields, forces, and mutual inductances of current systems by elliptic integrals”, J. Appl. Phys, 34 (1963), 2567–2573 | DOI