Coexistence of the three trophic levels in a model with intraguild predation and intraspecific competition of prey
Matematičeskaâ biologiâ i bioinformatika, Tome 16 (2021), pp. 394-410.

Voir la notice de l'article provenant de la source Math-Net.Ru

The model of a three-trophic community with intraguild predation is considered. The system consists of three coupled ordinary differential equations describing the dynamics of resource, prey and predator. Models with intraguild predation are characterized by predators that feed on resource of its own prey. A number of similar models with different functional responses have been proposed. In contrast to previous works, in the present model, the predator functional response to the resource is differed from that to the prey. The model takes into account an intraspecific competition of prey to stabilize the system in resource-rich environment. Conditions of existence and local stability of non-negative solutions are established. The possibility of Hopf bifurcation around positive equilibrium with consumption rate as bifurcation parameter is studied. For the model, in the plane of the consumption and predation rates, the regions of existence and stability of boundary and internal equilibria are constructed. Numerical simulations show that the region of equilibrium coexistence of populations is increased due to the inclusion of prey self-limitation in the model. Bifurcation diagrams confirm the stabilizing effect of intraspecific competition of prey on the system dynamics in resource-rich environment.
@article{MBB_2021_16_a9,
     author = {E. E. Giricheva},
     title = {Coexistence of the three trophic levels in a model with intraguild predation and intraspecific competition of prey},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {394--410},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2021_16_a9/}
}
TY  - JOUR
AU  - E. E. Giricheva
TI  - Coexistence of the three trophic levels in a model with intraguild predation and intraspecific competition of prey
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2021
SP  - 394
EP  - 410
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2021_16_a9/
LA  - ru
ID  - MBB_2021_16_a9
ER  - 
%0 Journal Article
%A E. E. Giricheva
%T Coexistence of the three trophic levels in a model with intraguild predation and intraspecific competition of prey
%J Matematičeskaâ biologiâ i bioinformatika
%D 2021
%P 394-410
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2021_16_a9/
%G ru
%F MBB_2021_16_a9
E. E. Giricheva. Coexistence of the three trophic levels in a model with intraguild predation and intraspecific competition of prey. Matematičeskaâ biologiâ i bioinformatika, Tome 16 (2021), pp. 394-410. http://geodesic.mathdoc.fr/item/MBB_2021_16_a9/

[1] R. M. May, “Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos”, Science, 186:4164 (1974), 645–647 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.186.4164.645'>10.1126/science.186.4164.645</ext-link>

[2] M. P. Hassel, The dynamics of arthropod predator-prey systems, Princeton University Press, Princeton, 1978 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=508052'>508052</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0429.92018'>0429.92018</ext-link>

[3] R. M. Anderson, R. M. May, “Population biology of infectious diseases. Part I”, Nature, 280 (1979), 361–367 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/280361a0'>10.1038/280361a0</ext-link>

[4] P. Turchin, Complex population dynamics: a theoretical/empirical synthesis, Princeton University Press, Princeton, 2003 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2080584'>2080584</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1062.92077'>1062.92077</ext-link>

[5] H. I. Freedman, P. Waltman, “Persistence in models of three interacting predator-prey populations”, Math. Bioscience, 68:2 (1984), 213–231 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0025-5564(84)90032-4'>10.1016/0025-5564(84)90032-4</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=738903'>738903</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0534.92026'>0534.92026</ext-link>

[6] A. Hastings, T. Powell, “Chaos in a three-species food chain”, Ecology, 72:3 (1991), 896–903 <ext-link ext-link-type='doi' href='https://doi.org/10.2307/1940591'>10.2307/1940591</ext-link>

[7] S. B. Hsu, S. P. Hubbell, P. Waltman, “A contribution to the theory of competing predators”, Ecol. Monography, 48:3 (1978), 337–349 <ext-link ext-link-type='doi' href='https://doi.org/10.2307/2937235'>10.2307/2937235</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=512172'>512172</ext-link>

[8] N. Krikorian, “The Volterra model for three species predator-prey systems: boundedness and stability”, J. Math. Biol, 7:2 (1979), 117–132 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/BF00276925'>10.1007/BF00276925</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=648975'>648975</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0403.92021'>0403.92021</ext-link>

[9] A. D. Bazykin, Matematichesakaya biofizika vzaimodeistvuyuschikh populyatsii, Nauka, M., 1985, 165 pp.

[10] Sze-Bi Hsu, Shigui Ruan, Ting-Hui Yang, “Analysis of three species Lotka-Volterra food web models with omnivory”, Journal of Mathematical Analysis and Applications, 426:2 (2015), 659–687 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jmaa.2015.01.035'>10.1016/j.jmaa.2015.01.035</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3314852'>3314852</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1333.92046'>1333.92046</ext-link>

[11] R. D. Holt, G. A. Polis, “A Theoretical Framework for Intraguild Predation”, American Naturalist, 149 (1997), 745–764 <ext-link ext-link-type='doi' href='https://doi.org/10.1086/286018'>10.1086/286018</ext-link>

[12] T. Namba, K. Tanabe, “Omnivory and stability of food webs”, Ecological Complexity, 5 (2008), 73–85 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.ecocom.2008.02.001'>10.1016/j.ecocom.2008.02.001</ext-link>

[13] Y. Kang, L. Wedekin, “Dynamics of a intraguild predation model with generalist or specialist predator”, Journal of Mathematical Biology, 67:5 (2013), 1227–1259 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s00285-012-0584-z'>10.1007/s00285-012-0584-z</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3111989'>3111989</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1286.34071'>1286.34071</ext-link>

[14] K. Tanabe, T. Namba, “Omnivory Creates Chaos in Simple Food Web Models”, Ecology, 86:12 (2005), 3411–3414 <ext-link ext-link-type='doi' href='https://doi.org/10.1890/05-0720'>10.1890/05-0720</ext-link>

[15] P. Abrams, S. R. Fung, “Prey persistence and abundance in systems with intraguild predation and type-2 functional responses”, Journal of Theoretical Biology, 264:3 (2010), 1033–1042 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jtbi.2010.02.045'>10.1016/j.jtbi.2010.02.045</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2980808'>2980808</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1406.92481'>1406.92481</ext-link>

[16] L. D.J. Kuijper, B. W. Kooi, C. Zonneveld, Kooijman S. A.L. M., “Omnivory and food web dynamics”, Ecological Modelling, 163 (2003), 19–32 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0304-3800(02)00351-4'>10.1016/S0304-3800(02)00351-4</ext-link>

[17] V. Křivan, S. Diehl, “Adaptive omnivory and species coexistence in tri-trophic food webs”, Theor. Popul. Biol, 67 (2005), 85–99 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.tpb.2004.09.003'>10.1016/j.tpb.2004.09.003</ext-link>

[18] J. Vandermeer, “Omnivory and the stability of food webs”, Journal of Theoretical Biology, 238 (2006), 497–504 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jtbi.2005.06.006'>10.1016/j.jtbi.2005.06.006</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2206920'>2206920</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1445.92304'>1445.92304</ext-link>

[19] Zhang Guohong, Wang Xiaoli, “Extinction and coexistence of species for a diffusive intraguild predation model with B-D functional response”, Discrete and Continuous Dynamical Systems B, 23:9 (2018), 3755–3786 <ext-link ext-link-type='doi' href='https://doi.org/10.3934/dcdsb.2018076'>10.3934/dcdsb.2018076</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3927574'>3927574</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1404.35265'>1404.35265</ext-link>

[20] A. Sentis, J. L. Hemptinne, J. Brodeur, “How functional response and productivity modulate intraguild predation”, Ecosphere, 4:4 (2013), 46 <ext-link ext-link-type='doi' href='https://doi.org/10.1890/ES12-00379.1'>10.1890/ES12-00379.1</ext-link>

[21] C. S. Holling, “The functional response of predators to prey density and its role in mimicry and population regulation”, Mem. Entomol. Soc. Can, 45 (1965), 5–60 <ext-link ext-link-type='doi' href='https://doi.org/10.4039/entm9745fv'>10.4039/entm9745fv</ext-link>

[22] D. Sen, S. Ghorai, M. Banerjee, “Complex dynamics of a three species prey-predator model with intraguild predation”, Ecological Complexity, 34 (2018), 9–22 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.ecocom.2018.02.002'>10.1016/j.ecocom.2018.02.002</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1487.94020'>1487.94020</ext-link>

[23] Křivan V., Eisner J., “The effect of the Holling type II functional response on apparent competition”, Theoretical Population Biology, 70:4 (2006), 421–430 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.tpb.2006.07.004'>10.1016/j.tpb.2006.07.004</ext-link>

[24] S. D. Mylius, K. Klumpers, A. M. de Roos, L. Persson, “Impact of intraguild predation and stage structure on simple communities along a productivity gradient”, American Naturalist, 158:3 (2001), 259–276 <ext-link ext-link-type='doi' href='https://doi.org/10.1086/321321'>10.1086/321321</ext-link>

[25] I. Loreto-Hernández, “Existence of a Limit Cycle in an Intraguild Food Web Model with Holling Type II and Logistic Growth for the Common Prey”, Applied Mathematics, 8 (2017), 358–376 <ext-link ext-link-type='doi' href='https://doi.org/10.4236/am.2017.83030'>10.4236/am.2017.83030</ext-link>

[26] K. L. Denman, M. A. Pena, “The response of two coupled one-dimensional mixed layer/planktonic ecosystem models to climate change in the NE subarctic Pacific Ocean”, Deep Sea Research Part II: Topical Studies in Oceanography, 49:24-25 (2002), 5739–5757 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0967-0645(02)00212-6'>10.1016/S0967-0645(02)00212-6</ext-link>

[27] A. Morozov, E. Arashkevich, A. Nikishina, K. Solovyev, “Nutrient-rich plankton community stabilized via predator-prey interactions: revisiting the role of vertical heterogeneity”, Math. Med. Biol, 28 (2011), 185–215 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/imammb/dqq010'>10.1093/imammb/dqq010</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2813305'>2813305</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1216.92066'>1216.92066</ext-link>

[28] A. M. Edwards, J. Brindley, “Zooplankton mortality and the dynamical behaviour of plankton population models”, Bull. Math. Biol, 61 (1999), 303–339 <ext-link ext-link-type='doi' href='https://doi.org/10.1006/bulm.1998.0082'>10.1006/bulm.1998.0082</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1323.92162'>1323.92162</ext-link>

[29] T. Kiørboe, A Mechanistic Approach to Plankton Ecology, Princeton University Press, Princeton, 2008

[30] E. Saiz, A. Calbet, “Copepod feeding in the ocean: scaling patterns, composition of their diet and the bias of estimates due to microzooplankton grazing during incubations”, Hydrobiologia, 666:1 (2011), 181–196 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s10750-010-0421-6'>10.1007/s10750-010-0421-6</ext-link>

[31] P. J.S. Franks, “Phytoplankton blooms in a fluctuating environment: the roles of plankton response time scales and grazing”, J. Plankton Res, 23 (2001), 1433–1441 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/plankt/23.12.1433'>10.1093/plankt/23.12.1433</ext-link>

[32] B. Hansen, K. S. Tande, U. C. Berggreen, “On the trophic fate of Phaeocystis pouchetii (Hariot). III. Functional responses in grazing demonstrated on juvenile stages of Calanus finmarchicus (Copepoda) fed diatoms and Phaeocystis”, J. Plankton Res, 12 (1990), 1173–1187 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/plankt/12.6.1173'>10.1093/plankt/12.6.1173</ext-link>

[33] R. J. Hall, “Intraguild Predation in the Presence of a Shared Natural Enemy”, Ecology, 92:2 (2011), 352–361 <ext-link ext-link-type='doi' href='https://doi.org/10.1890/09-2314.1'>10.1890/09-2314.1</ext-link>

[34] C. M. Hickerson, “Edge effects and intraguild predation in native and introduced centipedes: evidence from the field and from laboratory microcosms”, Oecologia, 146:1 (2005), 110–119 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s00442-005-0197-y'>10.1007/s00442-005-0197-y</ext-link>

[35] S. Diehl, M. Feissel, “Effects of enrichment on three-level food chains with omnivory”, Am. Nat., 155 (2000), 200–218 <ext-link ext-link-type='doi' href='https://doi.org/10.1086/303319'>10.1086/303319</ext-link>