Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2021_16_a9, author = {E. E. Giricheva}, title = {Coexistence of the three trophic levels in a model with intraguild predation and intraspecific competition of prey}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {394--410}, publisher = {mathdoc}, volume = {16}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2021_16_a9/} }
TY - JOUR AU - E. E. Giricheva TI - Coexistence of the three trophic levels in a model with intraguild predation and intraspecific competition of prey JO - Matematičeskaâ biologiâ i bioinformatika PY - 2021 SP - 394 EP - 410 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2021_16_a9/ LA - ru ID - MBB_2021_16_a9 ER -
%0 Journal Article %A E. E. Giricheva %T Coexistence of the three trophic levels in a model with intraguild predation and intraspecific competition of prey %J Matematičeskaâ biologiâ i bioinformatika %D 2021 %P 394-410 %V 16 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2021_16_a9/ %G ru %F MBB_2021_16_a9
E. E. Giricheva. Coexistence of the three trophic levels in a model with intraguild predation and intraspecific competition of prey. Matematičeskaâ biologiâ i bioinformatika, Tome 16 (2021), pp. 394-410. http://geodesic.mathdoc.fr/item/MBB_2021_16_a9/
[1] R. M. May, “Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos”, Science, 186:4164 (1974), 645–647 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.186.4164.645'>10.1126/science.186.4164.645</ext-link>
[2] M. P. Hassel, The dynamics of arthropod predator-prey systems, Princeton University Press, Princeton, 1978 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=508052'>508052</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0429.92018'>0429.92018</ext-link>
[3] R. M. Anderson, R. M. May, “Population biology of infectious diseases. Part I”, Nature, 280 (1979), 361–367 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/280361a0'>10.1038/280361a0</ext-link>
[4] P. Turchin, Complex population dynamics: a theoretical/empirical synthesis, Princeton University Press, Princeton, 2003 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2080584'>2080584</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1062.92077'>1062.92077</ext-link>
[5] H. I. Freedman, P. Waltman, “Persistence in models of three interacting predator-prey populations”, Math. Bioscience, 68:2 (1984), 213–231 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0025-5564(84)90032-4'>10.1016/0025-5564(84)90032-4</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=738903'>738903</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0534.92026'>0534.92026</ext-link>
[6] A. Hastings, T. Powell, “Chaos in a three-species food chain”, Ecology, 72:3 (1991), 896–903 <ext-link ext-link-type='doi' href='https://doi.org/10.2307/1940591'>10.2307/1940591</ext-link>
[7] S. B. Hsu, S. P. Hubbell, P. Waltman, “A contribution to the theory of competing predators”, Ecol. Monography, 48:3 (1978), 337–349 <ext-link ext-link-type='doi' href='https://doi.org/10.2307/2937235'>10.2307/2937235</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=512172'>512172</ext-link>
[8] N. Krikorian, “The Volterra model for three species predator-prey systems: boundedness and stability”, J. Math. Biol, 7:2 (1979), 117–132 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/BF00276925'>10.1007/BF00276925</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=648975'>648975</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0403.92021'>0403.92021</ext-link>
[9] A. D. Bazykin, Matematichesakaya biofizika vzaimodeistvuyuschikh populyatsii, Nauka, M., 1985, 165 pp.
[10] Sze-Bi Hsu, Shigui Ruan, Ting-Hui Yang, “Analysis of three species Lotka-Volterra food web models with omnivory”, Journal of Mathematical Analysis and Applications, 426:2 (2015), 659–687 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jmaa.2015.01.035'>10.1016/j.jmaa.2015.01.035</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3314852'>3314852</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1333.92046'>1333.92046</ext-link>
[11] R. D. Holt, G. A. Polis, “A Theoretical Framework for Intraguild Predation”, American Naturalist, 149 (1997), 745–764 <ext-link ext-link-type='doi' href='https://doi.org/10.1086/286018'>10.1086/286018</ext-link>
[12] T. Namba, K. Tanabe, “Omnivory and stability of food webs”, Ecological Complexity, 5 (2008), 73–85 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.ecocom.2008.02.001'>10.1016/j.ecocom.2008.02.001</ext-link>
[13] Y. Kang, L. Wedekin, “Dynamics of a intraguild predation model with generalist or specialist predator”, Journal of Mathematical Biology, 67:5 (2013), 1227–1259 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s00285-012-0584-z'>10.1007/s00285-012-0584-z</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3111989'>3111989</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1286.34071'>1286.34071</ext-link>
[14] K. Tanabe, T. Namba, “Omnivory Creates Chaos in Simple Food Web Models”, Ecology, 86:12 (2005), 3411–3414 <ext-link ext-link-type='doi' href='https://doi.org/10.1890/05-0720'>10.1890/05-0720</ext-link>
[15] P. Abrams, S. R. Fung, “Prey persistence and abundance in systems with intraguild predation and type-2 functional responses”, Journal of Theoretical Biology, 264:3 (2010), 1033–1042 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jtbi.2010.02.045'>10.1016/j.jtbi.2010.02.045</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2980808'>2980808</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1406.92481'>1406.92481</ext-link>
[16] L. D.J. Kuijper, B. W. Kooi, C. Zonneveld, Kooijman S. A.L. M., “Omnivory and food web dynamics”, Ecological Modelling, 163 (2003), 19–32 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0304-3800(02)00351-4'>10.1016/S0304-3800(02)00351-4</ext-link>
[17] V. Křivan, S. Diehl, “Adaptive omnivory and species coexistence in tri-trophic food webs”, Theor. Popul. Biol, 67 (2005), 85–99 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.tpb.2004.09.003'>10.1016/j.tpb.2004.09.003</ext-link>
[18] J. Vandermeer, “Omnivory and the stability of food webs”, Journal of Theoretical Biology, 238 (2006), 497–504 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jtbi.2005.06.006'>10.1016/j.jtbi.2005.06.006</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2206920'>2206920</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1445.92304'>1445.92304</ext-link>
[19] Zhang Guohong, Wang Xiaoli, “Extinction and coexistence of species for a diffusive intraguild predation model with B-D functional response”, Discrete and Continuous Dynamical Systems B, 23:9 (2018), 3755–3786 <ext-link ext-link-type='doi' href='https://doi.org/10.3934/dcdsb.2018076'>10.3934/dcdsb.2018076</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3927574'>3927574</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1404.35265'>1404.35265</ext-link>
[20] A. Sentis, J. L. Hemptinne, J. Brodeur, “How functional response and productivity modulate intraguild predation”, Ecosphere, 4:4 (2013), 46 <ext-link ext-link-type='doi' href='https://doi.org/10.1890/ES12-00379.1'>10.1890/ES12-00379.1</ext-link>
[21] C. S. Holling, “The functional response of predators to prey density and its role in mimicry and population regulation”, Mem. Entomol. Soc. Can, 45 (1965), 5–60 <ext-link ext-link-type='doi' href='https://doi.org/10.4039/entm9745fv'>10.4039/entm9745fv</ext-link>
[22] D. Sen, S. Ghorai, M. Banerjee, “Complex dynamics of a three species prey-predator model with intraguild predation”, Ecological Complexity, 34 (2018), 9–22 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.ecocom.2018.02.002'>10.1016/j.ecocom.2018.02.002</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1487.94020'>1487.94020</ext-link>
[23] Křivan V., Eisner J., “The effect of the Holling type II functional response on apparent competition”, Theoretical Population Biology, 70:4 (2006), 421–430 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.tpb.2006.07.004'>10.1016/j.tpb.2006.07.004</ext-link>
[24] S. D. Mylius, K. Klumpers, A. M. de Roos, L. Persson, “Impact of intraguild predation and stage structure on simple communities along a productivity gradient”, American Naturalist, 158:3 (2001), 259–276 <ext-link ext-link-type='doi' href='https://doi.org/10.1086/321321'>10.1086/321321</ext-link>
[25] I. Loreto-Hernández, “Existence of a Limit Cycle in an Intraguild Food Web Model with Holling Type II and Logistic Growth for the Common Prey”, Applied Mathematics, 8 (2017), 358–376 <ext-link ext-link-type='doi' href='https://doi.org/10.4236/am.2017.83030'>10.4236/am.2017.83030</ext-link>
[26] K. L. Denman, M. A. Pena, “The response of two coupled one-dimensional mixed layer/planktonic ecosystem models to climate change in the NE subarctic Pacific Ocean”, Deep Sea Research Part II: Topical Studies in Oceanography, 49:24-25 (2002), 5739–5757 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0967-0645(02)00212-6'>10.1016/S0967-0645(02)00212-6</ext-link>
[27] A. Morozov, E. Arashkevich, A. Nikishina, K. Solovyev, “Nutrient-rich plankton community stabilized via predator-prey interactions: revisiting the role of vertical heterogeneity”, Math. Med. Biol, 28 (2011), 185–215 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/imammb/dqq010'>10.1093/imammb/dqq010</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2813305'>2813305</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1216.92066'>1216.92066</ext-link>
[28] A. M. Edwards, J. Brindley, “Zooplankton mortality and the dynamical behaviour of plankton population models”, Bull. Math. Biol, 61 (1999), 303–339 <ext-link ext-link-type='doi' href='https://doi.org/10.1006/bulm.1998.0082'>10.1006/bulm.1998.0082</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1323.92162'>1323.92162</ext-link>
[29] T. Kiørboe, A Mechanistic Approach to Plankton Ecology, Princeton University Press, Princeton, 2008
[30] E. Saiz, A. Calbet, “Copepod feeding in the ocean: scaling patterns, composition of their diet and the bias of estimates due to microzooplankton grazing during incubations”, Hydrobiologia, 666:1 (2011), 181–196 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s10750-010-0421-6'>10.1007/s10750-010-0421-6</ext-link>
[31] P. J.S. Franks, “Phytoplankton blooms in a fluctuating environment: the roles of plankton response time scales and grazing”, J. Plankton Res, 23 (2001), 1433–1441 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/plankt/23.12.1433'>10.1093/plankt/23.12.1433</ext-link>
[32] B. Hansen, K. S. Tande, U. C. Berggreen, “On the trophic fate of Phaeocystis pouchetii (Hariot). III. Functional responses in grazing demonstrated on juvenile stages of Calanus finmarchicus (Copepoda) fed diatoms and Phaeocystis”, J. Plankton Res, 12 (1990), 1173–1187 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/plankt/12.6.1173'>10.1093/plankt/12.6.1173</ext-link>
[33] R. J. Hall, “Intraguild Predation in the Presence of a Shared Natural Enemy”, Ecology, 92:2 (2011), 352–361 <ext-link ext-link-type='doi' href='https://doi.org/10.1890/09-2314.1'>10.1890/09-2314.1</ext-link>
[34] C. M. Hickerson, “Edge effects and intraguild predation in native and introduced centipedes: evidence from the field and from laboratory microcosms”, Oecologia, 146:1 (2005), 110–119 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s00442-005-0197-y'>10.1007/s00442-005-0197-y</ext-link>
[35] S. Diehl, M. Feissel, “Effects of enrichment on three-level food chains with omnivory”, Am. Nat., 155 (2000), 200–218 <ext-link ext-link-type='doi' href='https://doi.org/10.1086/303319'>10.1086/303319</ext-link>