Modeling of photosynthesis process and assessing of phytoplankton dynamics based on Droop model
Matematičeskaâ biologiâ i bioinformatika, Tome 16 (2021), pp. 380-393.

Voir la notice de l'article provenant de la source Math-Net.Ru

Droop's well-known model simulates phytoplankton biomass dynamics based on nutrient limitation. The defining parameter is the nutrient concentration in phytoplankton cells (cell quota). This model is modified to description of the photosynthesis processes. The effects of photosynthetically active radiation must be taken into account. At the same time, the nutritional factor remains the main one. Water temperature is considered as a controlling factor. The influence of light during photosynthesis plays a decisive role. The decisive factor is the presence of photosynthetic substances. We conventionally combine them under the name “chlorophyll”. Sufficient variability in the proportion of chlorophyll in phytoplankton (chlorophyll quota) directly affects biomass production. The equation for the dynamics of chlorophyll quota is added to the Droop model. The parameters of the model depend on the concentration of nutrients, illumination and water temperature. The properties of the solutions in the model are investigated, the conditions for the existence and stability of equilibrium solutions are clarified. Complex dynamic regimes are revealed in the case of unstable equilibria. It was found that the most sensitive parameter for biomass dynamics is the minimum value of the cell quota. The dynamics of indicators for the daily cycle and the annual cycle of seasonal changes are calculated. The influence of nutrition, illumination and temperature on biomass production has been clarified. During the day, the chlorophyll quota fluctuates insignificantly due to a short period of time. The changes are noticeable at longer times for example during the season.
@article{MBB_2021_16_a8,
     author = {A. I. Abakumov and S. Ya. Pak},
     title = {Modeling of photosynthesis process and assessing of phytoplankton dynamics based on {Droop} model},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {380--393},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2021_16_a8/}
}
TY  - JOUR
AU  - A. I. Abakumov
AU  - S. Ya. Pak
TI  - Modeling of photosynthesis process and assessing of phytoplankton dynamics based on Droop model
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2021
SP  - 380
EP  - 393
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2021_16_a8/
LA  - ru
ID  - MBB_2021_16_a8
ER  - 
%0 Journal Article
%A A. I. Abakumov
%A S. Ya. Pak
%T Modeling of photosynthesis process and assessing of phytoplankton dynamics based on Droop model
%J Matematičeskaâ biologiâ i bioinformatika
%D 2021
%P 380-393
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2021_16_a8/
%G ru
%F MBB_2021_16_a8
A. I. Abakumov; S. Ya. Pak. Modeling of photosynthesis process and assessing of phytoplankton dynamics based on Droop model. Matematičeskaâ biologiâ i bioinformatika, Tome 16 (2021), pp. 380-393. http://geodesic.mathdoc.fr/item/MBB_2021_16_a8/

[1] T. Platt, C. L. Gallegos, W. G. Harrison, “Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton”, Journal Marine Research, 38:4 (1980), 687–701

[2] T. Platt, C. Caverhill, S. Sathyendranath, “Basin-scale estimates of oceanic primary production by remote sensing: The North Atlantic”, Journal of Geophysical Research: Oceans (1978–2012), 96:C8 (1991), 15147–15159 <ext-link ext-link-type='doi' href='https://doi.org/10.1029/91JC01118'>10.1029/91JC01118</ext-link>

[3] Hilary E. Glover, “Assimilation numbers in cultures of marine phytoplankton”, Journal of Plankton Research, 2:1 (1980), 69–79 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/plankt/2.1.69'>10.1093/plankt/2.1.69</ext-link>

[4] M. E. Vinogradov, E. A. Shushkina, N. P. Nezlin, V. I. Vedernikov, V. I. Gagarin, “Korrelyatsionnaya svyaz razlichnykh parametrov ekosistemy pelagiali Mirovogo okeana”, Okeanologiya, 39:1 (1999), 64–74

[5] G. D. Farquhar, S. von Caemmerer, J. A. Berry, “A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species”, Planta, 149 (1980), 78–90 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/BF00386231'>10.1007/BF00386231</ext-link>

[6] K. E. Lenz, G. E. Host, K. Roskoski, A. Noormets, A. Sober, D. F. Karnosky, “Analysis of a Farquhar-von Caemmerer-Berry leaf-level photosynthetic rate model for Populus tremuloides in the context of modeling and measurement limitations”, Environmental Pollution, 158 (2010), 1015–1022 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.envpol.2009.08.004'>10.1016/j.envpol.2009.08.004</ext-link>

[7] T. N. Buckley, G. D. Farquhar, “A new analytical model for whole-leaf potential electron transport rate”, Plant Cell and Environment, 27:12 (2004), 1487–1502 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/j.1365-3040.2004.01232.x'>10.1111/j.1365-3040.2004.01232.x</ext-link>

[8] A. Nikolaou, P. Hartmann, A. Sciandra, B. Chachuat, O. Bernard, “Dynamic coupling of photoacclimation and photoinhibition in a model of microalgae growth”, J. Theoret. Biology, 390 (2016), 61–72 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jtbi.2015.11.004'>10.1016/j.jtbi.2015.11.004</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3436835'>3436835</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1343.92547'>1343.92547</ext-link>

[9] Bernard O., “Hurdles and challenges for modelling and control of microalgae for CO2 mitigation and biofuel production”, Journal of Process Control, 21 (2011), 1378–1389 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jprocont.2011.07.012'>10.1016/j.jprocont.2011.07.012</ext-link>

[10] F. Mairet, O. Bernard, T. Lacour, A. Sciandra, “Modelling microalgae growth in nitrogen limited photobiorector for estimating biomass, carbohydrate and neutral lipid productivities”, J. IFAC Proceedings, 44 (2011), 10591–10596

[11] Govindjee, H. G. Weger, D. H. Turpin, J. J.S. van Rensen, O. J. de Vos, J. F.H. Snel, “Formate releases carbon dioxide/bicarbonate from thylakoid membranes measurements by mass spectroscopy and infrared gas analyzer”, Naturwissenschaften, 78 (1991), 168–170 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/BF01136204'>10.1007/BF01136204</ext-link>

[12] N. A. Moiseeva, T. Ya. Churilova, T. V. Efimova, O. V. Krivenko, D. N. Matorin, “Fluorescence of Chlorophyll a during Seasonal Water Stratification in the Black Sea”, Physical Oceanography, 26:5 (2019), 425–437 <ext-link ext-link-type='doi' href='https://doi.org/10.22449/1573--160X-2019--5-425--437'>10.22449/1573--160X-2019--5-425--437</ext-link>

[13] P. G. Falkowski, “The Ocean invisible fores”, Scientific American, 54 (2002), 54–61 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/scientificamerican0802-54'>10.1038/scientificamerican0802-54</ext-link>

[14] A. I. Aleksanin, P. A. Salyuk, I. E. Stepochkin, I. A. Golik, “Analiz vozdeistviya tropicheskikh tsiklonov na polya kontsentratsii khlorofilla-"A" v Severo-Zapadnoi chasti Tikhogo okeana v 1979–1986 i 1996–2010 gg. s ispolzovaniem dannykh passivnogo sputnikovogo zondirovaniya tsveta okeana”, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 11:2 (2014), 219–227

[15] M. R. Droop, “The nutrient status of algal cells in continuous culture”, J. Mar. Biol. Assoc. U. K, 54 (1974), 825–855 <ext-link ext-link-type='doi' href='https://doi.org/10.1017/S002531540005760X'>10.1017/S002531540005760X</ext-link>

[16] S. E. Jorgensen, “A eutrophication model for a lake”, J. Ecol. Model, 2 (1976), 147–165 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0304-3800(76)90030-2'>10.1016/0304-3800(76)90030-2</ext-link>

[17] V. V. Trofimova, P. R. Makarevich, “Sutochnaya dinamika khlorofilla a fitoplanktonnogo soobschestva estuarnoi zony Kolskogo zaliva (Barentsevo more)”, Algologiya, 19:2 (2009), 145–154 (data obrascheniya: 20.10.2021) <ext-link ext-link-type='uri' href='http://nbuv.gov.ua/UJRN/algol_2009_19_2_5'>http://nbuv.gov.ua/UJRN/algol_2009_19_2_5</ext-link>

[18] A. Le Bouteiller, A. Herbland, “Diel variation of chlorophyll a as evidence from a 13-day station in the equatorial Atlantic Ocean”, Oceanologica Acta, 5:4 (1982), 433–441

[19] V. A. Silkin, A. I. Abakumov, L. A. Pautova, S. V. Pakhomova, A. V. Lifanchuk, “Mechanisms of regulation of invasive processes in phytoplankton on the example of the north-eastern part of the Black Sea”, Aquatic Ecology, 50:2 (2016), 221–234 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s10452-016-9570-7'>10.1007/s10452-016-9570-7</ext-link>

[20] S. I. Babanazarova O. V. Sidelev, “Analiz svyazei pigmentnykh i strukturnykh kharakteristik fitoplanktona vysokoevtrofnogo ozera”, Zhurnal Sibirskogo federalnogo universiteta. Seriya «Biologiya», 1:2 (2008), 162–177

[21] Monitoring sostoyaniya okruzhayuschei sredy na Zapadno-Kamchatskom litsenzionnom uchastke v 2015–2016 gg., Inform. byul., Krasnoyarsk–Petropavlovsk-Kamchatskii, 2015, 376 pp.