Mathematical model of airflow and solid particles transport in the human nasal cavity
Matematičeskaâ biologiâ i bioinformatika, Tome 16 (2021), pp. 349-366.

Voir la notice de l'article provenant de la source Math-Net.Ru

As part of the mathematical model of the human respiratory system, a submodel is considered for the study of the non-steady airflow with solid particles (suspended particulate matter (PM) / dust particles) and the deposition of particles of various sizes in the human nasal cavity. It is assumed that the nasal cavity is divided by the bone-cartilaginous septum into two symmetrical (relative to the nasal septum) parts; the average geometry of the right part of the human nasal cavity is considered. The inhaled air is considered as a multiphase mixture of homogeneous single-component gas and solid dust particles. The Eulerian-Lagrangian approach to modeling the motion of a multiphase mixture is used: a viscous liquid model is used to describe the motion of the carrier gas phase; the carried phase (dust particles) is modeled as separate inclusions of various sizes. The process of heating the inhaled air due to its contact with the walls is also taken into account. The features of the unsteady flow of a multiphase air mixture with dust particles were obtained using Ansys CFX for several scenarios. It has been noted that when studying the airflow in the nasal cavity, it is necessary to take into account the presence of turbulence, for which it is proposed to use the $k$-$\omega$ model. The velocity fields of inhaled air in the nasal cavity have been obtained; presented temperature distributions in the nasal cavity at different time points; made estimates of air heating at different temperatures of inhaled air; gave estimates of the proportion of deposited particles in the nasal cavity depending on the particle size for real machine-building production; presented trajectories of movement of suspended particles. Thus, it is shown that more than 99.7% of particles with a diameter of more than 10 microns deposit in the human nasal cavity; as the particle diameter and mass decrease, the proportion of deposited particles decreases. Suspended particles with a size of less than 2.5 microns almost do not deposit in the nasal cavity. They can penetrate deeper into the lower airways and lungs of a person with the inhaled air and, having fibrogenic and toxic effect, can cause diseases. The results obtained are in good agreement with the results of individual studies performed by other scientists. Further development of the model involves studying airflow in the human lungs and modeling the formation of diseases caused by the harmful effects of environmental factors (including dust particles) entering the human body by inhalation.
@article{MBB_2021_16_a7,
     author = {P. V. Trusov and N. V. Zaitseva and M. Yu. Cinker and A. V. Nekrasova},
     title = {Mathematical model of airflow and solid particles transport in the human nasal cavity},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {349--366},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2021_16_a7/}
}
TY  - JOUR
AU  - P. V. Trusov
AU  - N. V. Zaitseva
AU  - M. Yu. Cinker
AU  - A. V. Nekrasova
TI  - Mathematical model of airflow and solid particles transport in the human nasal cavity
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2021
SP  - 349
EP  - 366
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2021_16_a7/
LA  - ru
ID  - MBB_2021_16_a7
ER  - 
%0 Journal Article
%A P. V. Trusov
%A N. V. Zaitseva
%A M. Yu. Cinker
%A A. V. Nekrasova
%T Mathematical model of airflow and solid particles transport in the human nasal cavity
%J Matematičeskaâ biologiâ i bioinformatika
%D 2021
%P 349-366
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2021_16_a7/
%G ru
%F MBB_2021_16_a7
P. V. Trusov; N. V. Zaitseva; M. Yu. Cinker; A. V. Nekrasova. Mathematical model of airflow and solid particles transport in the human nasal cavity. Matematičeskaâ biologiâ i bioinformatika, Tome 16 (2021), pp. 349-366. http://geodesic.mathdoc.fr/item/MBB_2021_16_a7/

[1] B. Brunekreef, Holgate S. T., “Air pollution and health”, Lancet, 360 (2002), 1233–1242 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0140-6736(02)11274-8'>10.1016/S0140-6736(02)11274-8</ext-link>

[2] N. V. Zaitseva, O. Yu. Ustinova, A. I. Aminova, Gigienicheskie aspekty narusheniya zdorovya detei pri vozdeistvii khimicheskikh faktorov sredy obitaniya, ed. N.V. Zaitseva, Knizhnyi format, Perm, 2011, 489 pp.

[3] Y. F. Xing, Y. H. Xu, M. H. Shi, Y. X. Lian, “The impact of PM2.5 on the human respiratory system”, Journal of Thoracic Disease, 8:1 (2016), E69-E74 <ext-link ext-link-type='doi' href='https://doi.org/10.3978/j.issn.2072--1439.2016.01.19'>10.3978/j.issn.2072--1439.2016.01.19</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3472428'>3472428</ext-link>

[4] E. M. Vlasova, A. A. Vorobeva, T. A. Ponomareva, “Osobennosti formirovaniya kardiorespiratornoi patologii u rabotnikov titanomagnievykh proizvodstv”, Meditsina truda i promyshlennaya ekologiya, 2017, no. 9, 38

[5] I. V. Tikhonova, M. A. Zemlyanova, Yu. V. Koldibekova, E. V. Peskova, A. M. Ignatova, “Gigienicheskaya otsenka aerogennogo vozdeistviya vzveshennykh veschestv na zabolevaemost detei boleznyami organov dykhaniya v zone vliyaniya vybrosov metallurgicheskogo proizvodstva”, Analiz riska zdorovyu, 2020, no. 3, 61–69

[6] E. M. Vlasova, O. Yu. Ustinova, A. E. Nosov, S. Yu. Zagorodnov, “Osobennosti zabolevanii organov dykhaniya u plavilschikov titanovykh splavov v usloviyakh sochetannogo vozdeistviya melkodispersnoi pyli i soedinenii khlora”, Gigiena i sanitariya, 98:2 (2019), 153–158

[7] A. L. Grebenev, Propedevtika vnutrennikh boleznei, Meditsina, M., 2001, 592 pp.

[8] B. S. Shklyar, Diagnostika vnutrennikh boleznei, Vysshaya shkola, Kiev, 1972, 516 pp.

[9] P. V. Trusov, N. V. Zaitseva, D. A. Kiryanov, M. R. Kamaltdinov, M. Yu. Tsinker, V. M. Chigvintsev, D. V. Lanin, “Matematicheskaya model evolyutsii funktsionalnykh narushenii v organizme cheloveka s uchetom vneshnesredovykh faktorov”, Matematicheskaya biologiya i bioinformatika, 7:2 (2012), 589–610 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2012.7.589'>10.17537/2012.7.589</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1399777'>1399777</ext-link>

[10] P. V. Trusov, N. V. Zaitseva, M. Yu. Tsinker, “Modelirovanie protsessa dykhaniya cheloveka: kontseptualnaya i matematicheskaya postanovki”, Matematicheskaya biologiya i bioinformatika, 11:1 (2016), 64–80 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2016.11.64'>10.17537/2016.11.64</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1399777'>1399777</ext-link>

[11] M. R. Kamaltdinov, “Trekhmernoe modelirovanie motoriki antroduodenalnoi oblasti pischevaritelnogo trakta dlya zadach otsenki riska zdorovyu pri peroralnoi ekspozitsii khimicheskikh veschestv”, Analiz riska zdorovyu, 2014, no. 2, 68–75 <ext-link ext-link-type='doi' href='https://doi.org/10.21668/health.risk/2014.2.08'>10.21668/health.risk/2014.2.08</ext-link>

[12] D. A. Kiryanov, D. V. Lanin, V. M. Chigvintsev, “Matematicheskaya model funktsionirovaniya immunnoi i neiroendokrinnoi sistem s uchetom evolyutsii narushenii sinteticheskoi funktsii organov”, Analiz riska zdorovyu, 2015, no. 3, 68–72 <ext-link ext-link-type='doi' href='https://doi.org/10.21668/health.risk/2015.3.10'>10.21668/health.risk/2015.3.10</ext-link>

[13] P. V. Trusov, N. V. Zaitseva, M. Yu. Tsinker, A. V. Babushkina, “Modelirovanie techeniya zapylennogo vozdukha v respiratornom trakte”, Rossiiskii zhurnal biomekhaniki, 22:3 (2018), 301–314

[14] P. V. Trusov, N. V. Zaitseva, M. Yu. Tsinker, “O modelirovanii techeniya vozdukha v legkikh cheloveka: konstitutivnye sootnosheniya dlya opisaniya deformirovaniya poristoi sredy”, Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Mekhanika, 2020, no. 4, 165–174

[15] J. Bruning, T. Hildebrandt, W. Heppt, N. Schmidt, H. Lamecker, A. Szengel, N. Amiridze, H. Ramm, M. Bindernagel, S. Zachow, L. Goubergrits, “Characterization of the Airflow within an Average Geometry of the Healthy Human Nasal Cavity”, Scientific Reports, 10:1 (2020), 3755 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41598--020--60755--3'>10.1038/s41598--020--60755--3</ext-link>

[16] V. L. Ganimedov, M. I. Muchnaya, A. S. Sadovskii, “Techenie vozdukha v nosovoi polosti cheloveka”, Rezultaty matematicheskogo modelirovaniya. Rossiiskii zhurnal biomekhaniki, 19:1 (2015), 37–51

[17] V. M. Fomin, V. N. Vetlutskii, V. L. Ganimedov, M. I. Muchnaya, V. N. Shepelenko, M. N. Melnikov, A. A. Savina, “Issledovanie techeniya vozdukha v nosovoi polosti cheloveka”, Prikladnaya mekhanika i tekhnicheskaya fizika, 51:2 (300) (2010), 107–115 <ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1272.76325'>1272.76325</ext-link>

[18] A. S. Sadovskii, L. Yu. Bosykh, V. L. Ganimedov, M. I. Muchnaya, “Chislennoe modelirovanie posledstvii realnykh i virtualnykh operatsii na nosovoi polosti cheloveka”, KhI Vserossiiskii s'ezd po fundamentalnym problemam teoreticheskoi i prikladnoi mekhaniki, sbornik dokladov, D.Yu. Akhmetov, A.N. Gerasimov, Sh.M. Khaidarov (sost.), eds. D.A. Gubaidullin, A.I. Elizarov, E.K. Lipachev, 2015, 3298–3300

[19] V. L. Ganimedov, M. I. Muchnaya, “Chislennoe modelirovanie osazhdeniya chastits v nosovoi polosti cheloveka”, Teplofizika i aeromekhanika, 27:2 (2020), 317–328

[20] A. A. Voronin, G. N. Lukyanov, R. V. Neronov, “Modelirovanie vozdushnogo potoka v kanalakh neregulyarnoi formy”, Nauchno-tekhnicheskii vestnik informatsionnykh tekhnologii, mekhaniki i optiki, 2013, no. 3 (85), 113–118

[21] R. V. Neronov, G. N. Lukyanov, A. A. Rassadina, A. A. Voronin, A. G. Malyshev, “Vliyanie formy polosti nosa na raspredelenie vozdushnykh potokov pri vdokhe”, Rossiiskaya otorinolaringologiya, 2017, no. 1 (86), 83–94 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1063922'>1063922</ext-link>

[22] G. N. Lukyanov, A. A. Voronin, A. A. Rassadina, “Modelirovanie konvektivnykh potokov v kanalakh neregulyarnoi formy na primere polosti nosa i okolonosovykh pazukh cheloveka”, Zhurnal tekhnicheskoi fiziki, 87:3 (2017), 462–467 <ext-link ext-link-type='doi' href='https://doi.org/10.21883/JTF.2017.03.44256.1919'>10.21883/JTF.2017.03.44256.1919</ext-link>

[23] H. Tang, J. Y. Tu, H. F. Li, B. Au-Hijleh, C. C. Xue, C. G. Li, “Dynamic Analysis of Airflow Features in a 3D Real-Anatomical Geometry of the Human Nasal Cavity”, 15th Australasian Fluid Mechanics Conference (Sydney, Australia, 2004) (accessed 15.06.2021) <ext-link ext-link-type='uri' href='https://www.aeromech.usyd.edu.au/15afmc/proceedings/papers/AFMC00174.pdf'>https://www.aeromech.usyd.edu.au/15afmc/proceedings/papers/AFMC00174.pdf</ext-link>

[24] P. Zamankhan, G. Ahmadi, Z. Wang, P. K. Hopke, Cheng Y-S, W. S. Su, D. Leonard, “Airflow and Deposition of Nano-Particles in a Human Nasal Cavity”, Aerosol Science and Technology, 40 (2006), 463–476 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/02786820600660903'>10.1080/02786820600660903</ext-link>

[25] S. E. Saghaian, A. R. Azimian, R. Dadkhah S. Jalilvand, S. M. Saghaian, “Computational analysis of airflow and particle deposition fraction in the upper part of the human respiratory system”, Biology, Engineering and Medicine, 3:6 (2018), 6–9 <ext-link ext-link-type='doi' href='https://doi.org/10.15761/BEM.1000155'>10.15761/BEM.1000155</ext-link>

[26] D. J. Doorly, D. J. Taylor, A. M. Gambaruto, R. C. Schroter, N. Tolley, “Nasal architecture: form and flow”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2008 <ext-link ext-link-type='doi' href='https://doi.org/10.1098/rsta.2008.0083'>10.1098/rsta.2008.0083</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1154.76066'>1154.76066</ext-link>

[27] D. J. Doorly, D. J. Taylor, R. C. Schroter, “Mechanics of airflow in the human nasal airways”, Respiratory Physiology and Neurobiology, 163 (2008), 100–110 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.resp.2008.07.027'>10.1016/j.resp.2008.07.027</ext-link>

[28] K. Inthavong, P. Das, N. Singh, J. Sznitman, “In silico approaches to respiratory nasal flows: A review”, Journal of Biomechanics, 97 (2019), 109434 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jbiomech.2019.109434'>10.1016/j.jbiomech.2019.109434</ext-link>

[29] R. Subramaniam, R. Richardson, K. Morgan, J. Kimbell, R. Guilmette, “Computational fluid dynamics simulations of inspiratory airflow in the human nose and nasopharynx”, Inhalation Toxicology, 1998, 91–120 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/089583798197772'>10.1080/089583798197772</ext-link>

[30] K. Zhao, P. W. Scherer, S. A. Hajiloo, P. Dalton, “Effect of anatomy on human nasal air flow and odorant transport patterns: Implications for olfaction”, Chemical Senses, 29:5 (2004), 365–379 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/chemse/bjh033'>10.1093/chemse/bjh033</ext-link>

[31] Y. D. Shang, K. Inthavong, J. Y. Tu, “Detailed micro-particle deposition patterns in the human nasal cavity influenced by the breathing zone”, Computers and Fluids, 114 (2015), 141–150 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.compfluid.2015.02.020'>10.1016/j.compfluid.2015.02.020</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3336811'>3336811</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1390.76943'>1390.76943</ext-link>

[32] G. J. Garcia, N. Bailie, D. A. Martins, J. S. Kimbell, “Atrophic rhinitis: A CFD study of air conditioning in the nasal cavity”, Journal of Applied Physiology, 103 (2007), 1082–1092 <ext-link ext-link-type='doi' href='https://doi.org/10.1152/japplphysiol.01118.2006'>10.1152/japplphysiol.01118.2006</ext-link>

[33] Q. J. Ge, K. Inthavong, J. Y. Tu, “Local deposition fractions of ultrafine particles in a human nasal-sinus cavity CFD model”, Inhalation Toxicology, 2012, 492–505 <ext-link ext-link-type='doi' href='https://doi.org/10.3109/08958378.2012.694494'>10.3109/08958378.2012.694494</ext-link>

[34] V. Goodarzi-Ardakani, M. Taeibi-Rahni, M. R. Salimi, G. Ahmadi, “Computational simulation of temperature and velocity distribution in human upper respiratory airway during inhalation of hot air”, Respiratory Physiology and Neurobiology, 223 (2016), 49–58 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.resp.2016.01.001'>10.1016/j.resp.2016.01.001</ext-link>

[35] I. Horschler, C. Brucker, W. Schr?oder, M. Meinke, “Investigation of the impact of the geometry on the nose flow”, European Journal of Mechanics, B/Fluids, 25 (2006), 471–490 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.euromechflu.2005.11.006'>10.1016/j.euromechflu.2005.11.006</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1122.76102'>1122.76102</ext-link>

[36] J. Wen, K. Inthavong, J. Tu, S. Wang, “Numerical simulations for detailed airflow dynamics in a human nasal cavity”, Respiratory Physiology and Neurobiology, 161 (2008), 125–135 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.resp.2008.01.012'>10.1016/j.resp.2008.01.012</ext-link>

[37] J. Lindemann, H. J. Brambs, T. Keck, K. M. Wiesmiller, G. Rettinger, D. Pless, “Numerical simulation of intranasal airflow after radical sinus surgery”, American Journal of Otolaryngology Head and Neck Medicine and Surgery, 26:3 (2005), 175–180 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.amjoto.2005.02.010'>10.1016/j.amjoto.2005.02.010</ext-link>

[38] I. V. Mai, N. V. Zaitseva, T. S. Ulanova, S. A. Vekovshinina, S. Yu. Zagorodnov, A. A. Kokoulina, E. V. Sedusova, E. V. Popova, Atlas promyshlennykh pylei. Pyli mashinostroitelnykh, metallurgicheskikh, gornodobyvayuschikh, gorno-pererabatyvayuschikh proizvodstv i predpriyatii tsvetnoi metallurgii, atlas, Perm, 2014, 285 pp.

[39] Y. Liu, M. R. Johnson, E. A. Matida, S. Kherani, J. Marsan, “Creation of a standardized geometry of the human nasal cavity”, J. Appl. Physiol, 106 (2009), 784–795 <ext-link ext-link-type='doi' href='https://doi.org/10.1152/japplphysiol.90376.2008'>10.1152/japplphysiol.90376.2008</ext-link>

[40] E. I. Borzyak, L. I. Volkova, E. A. Dobrovolskaya, V. S. Revazov, Sapin M. R., Anatomiya cheloveka, v. 1, ed. M.R. Sapin, Meditsina, M., 1993, 544 pp.

[41] Y. Liu, E. A. Matida, M. R. Johnson, “Experimental measurements and computational modeling of aerosol deposition in the Carleton-Civic standardized human nasal cavity”, Journal of Aerosol Science, 41 (2010), 569–586 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jaerosci.2010.02.014'>10.1016/j.jaerosci.2010.02.014</ext-link>

[42] K. Inthavong, J. Wen, J. Tu, Z. Tian, “From CT scans to CFD modelling-fluid and heat transfer in a realistic human nasal cavity”, Eng. Appl. Comput. Fluid Mech., 3:3 (2009), 321–335

[43] J. M. Garcia, J. D. Schroeter, J. S. Kimbell, “Sniffing out airflow and transport processes in the nasal cavity”, Fluent News Appl. Comput. Fluid Dynamics, 15:3 (2006), 3–5

[44] B. A. Katsnelson, O. G. Alekseeva, L. I. Privalova, E. V. Polzik, Pnevmokoniozy: patogenez i biologicheskaya profilaktika, UrO RAMN, Ekaterinburg, 1995, 325 pp.

[45] J. D. Brain, P. A. Valberg, “Models of lung retention based on the ICRP task group report”, Arch. Environ. Health, 28:1 (1974), 1–11 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/00039896.1974.10666424'>10.1080/00039896.1974.10666424</ext-link>