Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2021_16_a7, author = {P. V. Trusov and N. V. Zaitseva and M. Yu. Cinker and A. V. Nekrasova}, title = {Mathematical model of airflow and solid particles transport in the human nasal cavity}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {349--366}, publisher = {mathdoc}, volume = {16}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2021_16_a7/} }
TY - JOUR AU - P. V. Trusov AU - N. V. Zaitseva AU - M. Yu. Cinker AU - A. V. Nekrasova TI - Mathematical model of airflow and solid particles transport in the human nasal cavity JO - Matematičeskaâ biologiâ i bioinformatika PY - 2021 SP - 349 EP - 366 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2021_16_a7/ LA - ru ID - MBB_2021_16_a7 ER -
%0 Journal Article %A P. V. Trusov %A N. V. Zaitseva %A M. Yu. Cinker %A A. V. Nekrasova %T Mathematical model of airflow and solid particles transport in the human nasal cavity %J Matematičeskaâ biologiâ i bioinformatika %D 2021 %P 349-366 %V 16 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2021_16_a7/ %G ru %F MBB_2021_16_a7
P. V. Trusov; N. V. Zaitseva; M. Yu. Cinker; A. V. Nekrasova. Mathematical model of airflow and solid particles transport in the human nasal cavity. Matematičeskaâ biologiâ i bioinformatika, Tome 16 (2021), pp. 349-366. http://geodesic.mathdoc.fr/item/MBB_2021_16_a7/
[1] B. Brunekreef, Holgate S. T., “Air pollution and health”, Lancet, 360 (2002), 1233–1242 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0140-6736(02)11274-8'>10.1016/S0140-6736(02)11274-8</ext-link>
[2] N. V. Zaitseva, O. Yu. Ustinova, A. I. Aminova, Gigienicheskie aspekty narusheniya zdorovya detei pri vozdeistvii khimicheskikh faktorov sredy obitaniya, ed. N.V. Zaitseva, Knizhnyi format, Perm, 2011, 489 pp.
[3] Y. F. Xing, Y. H. Xu, M. H. Shi, Y. X. Lian, “The impact of PM2.5 on the human respiratory system”, Journal of Thoracic Disease, 8:1 (2016), E69-E74 <ext-link ext-link-type='doi' href='https://doi.org/10.3978/j.issn.2072--1439.2016.01.19'>10.3978/j.issn.2072--1439.2016.01.19</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3472428'>3472428</ext-link>
[4] E. M. Vlasova, A. A. Vorobeva, T. A. Ponomareva, “Osobennosti formirovaniya kardiorespiratornoi patologii u rabotnikov titanomagnievykh proizvodstv”, Meditsina truda i promyshlennaya ekologiya, 2017, no. 9, 38
[5] I. V. Tikhonova, M. A. Zemlyanova, Yu. V. Koldibekova, E. V. Peskova, A. M. Ignatova, “Gigienicheskaya otsenka aerogennogo vozdeistviya vzveshennykh veschestv na zabolevaemost detei boleznyami organov dykhaniya v zone vliyaniya vybrosov metallurgicheskogo proizvodstva”, Analiz riska zdorovyu, 2020, no. 3, 61–69
[6] E. M. Vlasova, O. Yu. Ustinova, A. E. Nosov, S. Yu. Zagorodnov, “Osobennosti zabolevanii organov dykhaniya u plavilschikov titanovykh splavov v usloviyakh sochetannogo vozdeistviya melkodispersnoi pyli i soedinenii khlora”, Gigiena i sanitariya, 98:2 (2019), 153–158
[7] A. L. Grebenev, Propedevtika vnutrennikh boleznei, Meditsina, M., 2001, 592 pp.
[8] B. S. Shklyar, Diagnostika vnutrennikh boleznei, Vysshaya shkola, Kiev, 1972, 516 pp.
[9] P. V. Trusov, N. V. Zaitseva, D. A. Kiryanov, M. R. Kamaltdinov, M. Yu. Tsinker, V. M. Chigvintsev, D. V. Lanin, “Matematicheskaya model evolyutsii funktsionalnykh narushenii v organizme cheloveka s uchetom vneshnesredovykh faktorov”, Matematicheskaya biologiya i bioinformatika, 7:2 (2012), 589–610 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2012.7.589'>10.17537/2012.7.589</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1399777'>1399777</ext-link>
[10] P. V. Trusov, N. V. Zaitseva, M. Yu. Tsinker, “Modelirovanie protsessa dykhaniya cheloveka: kontseptualnaya i matematicheskaya postanovki”, Matematicheskaya biologiya i bioinformatika, 11:1 (2016), 64–80 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2016.11.64'>10.17537/2016.11.64</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1399777'>1399777</ext-link>
[11] M. R. Kamaltdinov, “Trekhmernoe modelirovanie motoriki antroduodenalnoi oblasti pischevaritelnogo trakta dlya zadach otsenki riska zdorovyu pri peroralnoi ekspozitsii khimicheskikh veschestv”, Analiz riska zdorovyu, 2014, no. 2, 68–75 <ext-link ext-link-type='doi' href='https://doi.org/10.21668/health.risk/2014.2.08'>10.21668/health.risk/2014.2.08</ext-link>
[12] D. A. Kiryanov, D. V. Lanin, V. M. Chigvintsev, “Matematicheskaya model funktsionirovaniya immunnoi i neiroendokrinnoi sistem s uchetom evolyutsii narushenii sinteticheskoi funktsii organov”, Analiz riska zdorovyu, 2015, no. 3, 68–72 <ext-link ext-link-type='doi' href='https://doi.org/10.21668/health.risk/2015.3.10'>10.21668/health.risk/2015.3.10</ext-link>
[13] P. V. Trusov, N. V. Zaitseva, M. Yu. Tsinker, A. V. Babushkina, “Modelirovanie techeniya zapylennogo vozdukha v respiratornom trakte”, Rossiiskii zhurnal biomekhaniki, 22:3 (2018), 301–314
[14] P. V. Trusov, N. V. Zaitseva, M. Yu. Tsinker, “O modelirovanii techeniya vozdukha v legkikh cheloveka: konstitutivnye sootnosheniya dlya opisaniya deformirovaniya poristoi sredy”, Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Mekhanika, 2020, no. 4, 165–174
[15] J. Bruning, T. Hildebrandt, W. Heppt, N. Schmidt, H. Lamecker, A. Szengel, N. Amiridze, H. Ramm, M. Bindernagel, S. Zachow, L. Goubergrits, “Characterization of the Airflow within an Average Geometry of the Healthy Human Nasal Cavity”, Scientific Reports, 10:1 (2020), 3755 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41598--020--60755--3'>10.1038/s41598--020--60755--3</ext-link>
[16] V. L. Ganimedov, M. I. Muchnaya, A. S. Sadovskii, “Techenie vozdukha v nosovoi polosti cheloveka”, Rezultaty matematicheskogo modelirovaniya. Rossiiskii zhurnal biomekhaniki, 19:1 (2015), 37–51
[17] V. M. Fomin, V. N. Vetlutskii, V. L. Ganimedov, M. I. Muchnaya, V. N. Shepelenko, M. N. Melnikov, A. A. Savina, “Issledovanie techeniya vozdukha v nosovoi polosti cheloveka”, Prikladnaya mekhanika i tekhnicheskaya fizika, 51:2 (300) (2010), 107–115 <ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1272.76325'>1272.76325</ext-link>
[18] A. S. Sadovskii, L. Yu. Bosykh, V. L. Ganimedov, M. I. Muchnaya, “Chislennoe modelirovanie posledstvii realnykh i virtualnykh operatsii na nosovoi polosti cheloveka”, KhI Vserossiiskii s'ezd po fundamentalnym problemam teoreticheskoi i prikladnoi mekhaniki, sbornik dokladov, D.Yu. Akhmetov, A.N. Gerasimov, Sh.M. Khaidarov (sost.), eds. D.A. Gubaidullin, A.I. Elizarov, E.K. Lipachev, 2015, 3298–3300
[19] V. L. Ganimedov, M. I. Muchnaya, “Chislennoe modelirovanie osazhdeniya chastits v nosovoi polosti cheloveka”, Teplofizika i aeromekhanika, 27:2 (2020), 317–328
[20] A. A. Voronin, G. N. Lukyanov, R. V. Neronov, “Modelirovanie vozdushnogo potoka v kanalakh neregulyarnoi formy”, Nauchno-tekhnicheskii vestnik informatsionnykh tekhnologii, mekhaniki i optiki, 2013, no. 3 (85), 113–118
[21] R. V. Neronov, G. N. Lukyanov, A. A. Rassadina, A. A. Voronin, A. G. Malyshev, “Vliyanie formy polosti nosa na raspredelenie vozdushnykh potokov pri vdokhe”, Rossiiskaya otorinolaringologiya, 2017, no. 1 (86), 83–94 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1063922'>1063922</ext-link>
[22] G. N. Lukyanov, A. A. Voronin, A. A. Rassadina, “Modelirovanie konvektivnykh potokov v kanalakh neregulyarnoi formy na primere polosti nosa i okolonosovykh pazukh cheloveka”, Zhurnal tekhnicheskoi fiziki, 87:3 (2017), 462–467 <ext-link ext-link-type='doi' href='https://doi.org/10.21883/JTF.2017.03.44256.1919'>10.21883/JTF.2017.03.44256.1919</ext-link>
[23] H. Tang, J. Y. Tu, H. F. Li, B. Au-Hijleh, C. C. Xue, C. G. Li, “Dynamic Analysis of Airflow Features in a 3D Real-Anatomical Geometry of the Human Nasal Cavity”, 15th Australasian Fluid Mechanics Conference (Sydney, Australia, 2004) (accessed 15.06.2021) <ext-link ext-link-type='uri' href='https://www.aeromech.usyd.edu.au/15afmc/proceedings/papers/AFMC00174.pdf'>https://www.aeromech.usyd.edu.au/15afmc/proceedings/papers/AFMC00174.pdf</ext-link>
[24] P. Zamankhan, G. Ahmadi, Z. Wang, P. K. Hopke, Cheng Y-S, W. S. Su, D. Leonard, “Airflow and Deposition of Nano-Particles in a Human Nasal Cavity”, Aerosol Science and Technology, 40 (2006), 463–476 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/02786820600660903'>10.1080/02786820600660903</ext-link>
[25] S. E. Saghaian, A. R. Azimian, R. Dadkhah S. Jalilvand, S. M. Saghaian, “Computational analysis of airflow and particle deposition fraction in the upper part of the human respiratory system”, Biology, Engineering and Medicine, 3:6 (2018), 6–9 <ext-link ext-link-type='doi' href='https://doi.org/10.15761/BEM.1000155'>10.15761/BEM.1000155</ext-link>
[26] D. J. Doorly, D. J. Taylor, A. M. Gambaruto, R. C. Schroter, N. Tolley, “Nasal architecture: form and flow”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2008 <ext-link ext-link-type='doi' href='https://doi.org/10.1098/rsta.2008.0083'>10.1098/rsta.2008.0083</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1154.76066'>1154.76066</ext-link>
[27] D. J. Doorly, D. J. Taylor, R. C. Schroter, “Mechanics of airflow in the human nasal airways”, Respiratory Physiology and Neurobiology, 163 (2008), 100–110 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.resp.2008.07.027'>10.1016/j.resp.2008.07.027</ext-link>
[28] K. Inthavong, P. Das, N. Singh, J. Sznitman, “In silico approaches to respiratory nasal flows: A review”, Journal of Biomechanics, 97 (2019), 109434 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jbiomech.2019.109434'>10.1016/j.jbiomech.2019.109434</ext-link>
[29] R. Subramaniam, R. Richardson, K. Morgan, J. Kimbell, R. Guilmette, “Computational fluid dynamics simulations of inspiratory airflow in the human nose and nasopharynx”, Inhalation Toxicology, 1998, 91–120 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/089583798197772'>10.1080/089583798197772</ext-link>
[30] K. Zhao, P. W. Scherer, S. A. Hajiloo, P. Dalton, “Effect of anatomy on human nasal air flow and odorant transport patterns: Implications for olfaction”, Chemical Senses, 29:5 (2004), 365–379 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/chemse/bjh033'>10.1093/chemse/bjh033</ext-link>
[31] Y. D. Shang, K. Inthavong, J. Y. Tu, “Detailed micro-particle deposition patterns in the human nasal cavity influenced by the breathing zone”, Computers and Fluids, 114 (2015), 141–150 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.compfluid.2015.02.020'>10.1016/j.compfluid.2015.02.020</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3336811'>3336811</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1390.76943'>1390.76943</ext-link>
[32] G. J. Garcia, N. Bailie, D. A. Martins, J. S. Kimbell, “Atrophic rhinitis: A CFD study of air conditioning in the nasal cavity”, Journal of Applied Physiology, 103 (2007), 1082–1092 <ext-link ext-link-type='doi' href='https://doi.org/10.1152/japplphysiol.01118.2006'>10.1152/japplphysiol.01118.2006</ext-link>
[33] Q. J. Ge, K. Inthavong, J. Y. Tu, “Local deposition fractions of ultrafine particles in a human nasal-sinus cavity CFD model”, Inhalation Toxicology, 2012, 492–505 <ext-link ext-link-type='doi' href='https://doi.org/10.3109/08958378.2012.694494'>10.3109/08958378.2012.694494</ext-link>
[34] V. Goodarzi-Ardakani, M. Taeibi-Rahni, M. R. Salimi, G. Ahmadi, “Computational simulation of temperature and velocity distribution in human upper respiratory airway during inhalation of hot air”, Respiratory Physiology and Neurobiology, 223 (2016), 49–58 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.resp.2016.01.001'>10.1016/j.resp.2016.01.001</ext-link>
[35] I. Horschler, C. Brucker, W. Schr?oder, M. Meinke, “Investigation of the impact of the geometry on the nose flow”, European Journal of Mechanics, B/Fluids, 25 (2006), 471–490 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.euromechflu.2005.11.006'>10.1016/j.euromechflu.2005.11.006</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1122.76102'>1122.76102</ext-link>
[36] J. Wen, K. Inthavong, J. Tu, S. Wang, “Numerical simulations for detailed airflow dynamics in a human nasal cavity”, Respiratory Physiology and Neurobiology, 161 (2008), 125–135 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.resp.2008.01.012'>10.1016/j.resp.2008.01.012</ext-link>
[37] J. Lindemann, H. J. Brambs, T. Keck, K. M. Wiesmiller, G. Rettinger, D. Pless, “Numerical simulation of intranasal airflow after radical sinus surgery”, American Journal of Otolaryngology Head and Neck Medicine and Surgery, 26:3 (2005), 175–180 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.amjoto.2005.02.010'>10.1016/j.amjoto.2005.02.010</ext-link>
[38] I. V. Mai, N. V. Zaitseva, T. S. Ulanova, S. A. Vekovshinina, S. Yu. Zagorodnov, A. A. Kokoulina, E. V. Sedusova, E. V. Popova, Atlas promyshlennykh pylei. Pyli mashinostroitelnykh, metallurgicheskikh, gornodobyvayuschikh, gorno-pererabatyvayuschikh proizvodstv i predpriyatii tsvetnoi metallurgii, atlas, Perm, 2014, 285 pp.
[39] Y. Liu, M. R. Johnson, E. A. Matida, S. Kherani, J. Marsan, “Creation of a standardized geometry of the human nasal cavity”, J. Appl. Physiol, 106 (2009), 784–795 <ext-link ext-link-type='doi' href='https://doi.org/10.1152/japplphysiol.90376.2008'>10.1152/japplphysiol.90376.2008</ext-link>
[40] E. I. Borzyak, L. I. Volkova, E. A. Dobrovolskaya, V. S. Revazov, Sapin M. R., Anatomiya cheloveka, v. 1, ed. M.R. Sapin, Meditsina, M., 1993, 544 pp.
[41] Y. Liu, E. A. Matida, M. R. Johnson, “Experimental measurements and computational modeling of aerosol deposition in the Carleton-Civic standardized human nasal cavity”, Journal of Aerosol Science, 41 (2010), 569–586 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jaerosci.2010.02.014'>10.1016/j.jaerosci.2010.02.014</ext-link>
[42] K. Inthavong, J. Wen, J. Tu, Z. Tian, “From CT scans to CFD modelling-fluid and heat transfer in a realistic human nasal cavity”, Eng. Appl. Comput. Fluid Mech., 3:3 (2009), 321–335
[43] J. M. Garcia, J. D. Schroeter, J. S. Kimbell, “Sniffing out airflow and transport processes in the nasal cavity”, Fluent News Appl. Comput. Fluid Dynamics, 15:3 (2006), 3–5
[44] B. A. Katsnelson, O. G. Alekseeva, L. I. Privalova, E. V. Polzik, Pnevmokoniozy: patogenez i biologicheskaya profilaktika, UrO RAMN, Ekaterinburg, 1995, 325 pp.
[45] J. D. Brain, P. A. Valberg, “Models of lung retention based on the ICRP task group report”, Arch. Environ. Health, 28:1 (1974), 1–11 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/00039896.1974.10666424'>10.1080/00039896.1974.10666424</ext-link>