Polarons on dimerized lattice of polyacetilene. Continuum approximation
Matematičeskaâ biologiâ i bioinformatika, Tome 16 (2021), pp. 335-348.

Voir la notice de l'article provenant de la source Math-Net.Ru

A one-electron model is proposed to describe a polaron on a dimerized polyacetylene lattice. Within the framework of the formulated model, the dynamics of a freely moving polaron is considered. The results obtained are compared with the many-electron model that takes into account all $\pi$-electrons of the valence band. Polaron can move at subsonic and supersonic speeds. The subsonic polaron is stable. A supersonic polaron loses stability at times $\sim$ 6000 fs. A supersonic polaron has a forbidden speed range. An analytical solution to the continual approximation helps to understand the reason for the existence of forbidden speeds. The dynamics of a free polaron is similar to the dynamics of a polaron in an electric field. The proposed one-electron approximation significantly expands the possibilities of numerical simulation in comparison with the traditional many-electron model.
@article{MBB_2021_16_a6,
     author = {T. Yu. Astakhova and G. A. Vinogradov},
     title = {Polarons on dimerized lattice of polyacetilene. {Continuum} approximation},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {335--348},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2021_16_a6/}
}
TY  - JOUR
AU  - T. Yu. Astakhova
AU  - G. A. Vinogradov
TI  - Polarons on dimerized lattice of polyacetilene. Continuum approximation
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2021
SP  - 335
EP  - 348
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2021_16_a6/
LA  - en
ID  - MBB_2021_16_a6
ER  - 
%0 Journal Article
%A T. Yu. Astakhova
%A G. A. Vinogradov
%T Polarons on dimerized lattice of polyacetilene. Continuum approximation
%J Matematičeskaâ biologiâ i bioinformatika
%D 2021
%P 335-348
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2021_16_a6/
%G en
%F MBB_2021_16_a6
T. Yu. Astakhova; G. A. Vinogradov. Polarons on dimerized lattice of polyacetilene. Continuum approximation. Matematičeskaâ biologiâ i bioinformatika, Tome 16 (2021), pp. 335-348. http://geodesic.mathdoc.fr/item/MBB_2021_16_a6/

[1] Kausar A., “Review on structure, properties and appliance of essential conjugated polymers”, American Journal of Polymer Science & Engineering, 4 (2016), 91–102

[2] K. M. Ziadan, “Conducting Polymers Application”, New Polymers for Special Applications, ed. Ailton De Souza Gomes, Federal University of Rio de Janeiro, Brazil, 2012 <ext-link ext-link-type='doi' href='https://doi.org/10.5772/3345'>10.5772/3345</ext-link>

[3] R. Ravichandran, S. Sundarrajan, J. R. Venugopal, Sh. Mukherjee, S. Ramakrishna, “Applications of conducting polymers and their issues in biomedical engineering”, J. R. Soc. Interface, 7 (2010), 559 <ext-link ext-link-type='doi' href='https://doi.org/10.1098/rsif.2010.0120.focus'>10.1098/rsif.2010.0120.focus</ext-link>

[4] A. J. Heeger, “Nobel Lecture: Semiconducting and metallic polymers: The fourth generation of polymeric materials”, Rev. Mod. Phys., 73 (2001), 681 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/RevModPhys.73.681'>10.1103/RevModPhys.73.681</ext-link>

[5] A. G. MacDiarmid, “Nobel Lecture "Synthetic metals": A novel role for organic polymers”, Rev. Mod. Phys., 73 (2001), 707 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/RevModPhys.73.701'>10.1103/RevModPhys.73.701</ext-link>

[6] Shirakawa H., “Nobel Lecture: The discovery of polyacetylene film the dawning of an era of conducting polymers”, Rev. Mod. Phys., 73 (2001), 713 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/RevModPhys.73.713'>10.1103/RevModPhys.73.713</ext-link>

[7] N. Lu, L. Li, D. Geng, M. Liu, “A review for polaron dependent charge transport in organic semiconductor”, Organic Electronics, 61 (2018), 223 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.orgel.2018.05.053'>10.1016/j.orgel.2018.05.053</ext-link>

[8] W. P. Su, J. R. Schrieffer, A. J. Heeger, “Solitons in polyacetylene”, Phys. Rev. Lett., 42 (1979), 1698 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevLett.42.1698'>10.1103/PhysRevLett.42.1698</ext-link>

[9] W. P. Su, J. R. Schrieffer, A. J. Heeger, “Soliton excitations in polyacetylene”, Phys. Rev. B, 22 (1980), 2099 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevB.22.2099'>10.1103/PhysRevB.22.2099</ext-link>

[10] E. J. Meier, F. A. An, B. Gadway, “Observation of the topological soliton state in the Su-Schrieffer-Heeger model”, Nat. Commun., 7 (2016), 13986 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/ncomms13986'>10.1038/ncomms13986</ext-link>

[11] S. Fathizadeh, S. Behnia, “Charge and spin dynamics in DNA nanomolecules: Modeling and applications”, 21st Century Nanoscience A Handbook Bioinspired Systems and Methods, v. 7, ed. Sattler K. D., CRC Press, Boca Raton, 2020, 12 <ext-link ext-link-type='doi' href='https://doi.org/10.1201/9780429351525-12'>10.1201/9780429351525-12</ext-link>

[12] A. Terai, Y. Ono, “Phonons around a soliton and a solaron in Su-Schrieffer-Heeger's model of trans-(CH)$_x$”, J. Phys. Soc. Japan, 55 (1986), 213 <ext-link ext-link-type='doi' href='https://doi.org/10.1143/JPSJ.55.213'>10.1143/JPSJ.55.213</ext-link>

[13] Y. Ono, A. Terai, “Motion of charged soliton in polyacetylene due to electric field”, J. Phys. Soc. Japan, 59 (1990), 2893 <ext-link ext-link-type='doi' href='https://doi.org/10.1143/JPSJ.59.2893'>10.1143/JPSJ.59.2893</ext-link>

[14] S. V. Rakhmanova, E. M. Conwell, “Nonlinear dynamics of an added carrier in trans-polyacetylene in the presence of an electric field”, Synthetic Metals, 110 (2000), 37 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0379-6779(99)00261-1'>10.1016/S0379-6779(99)00261-1</ext-link>

[15] S. Stafstr"om, “Soliton and polaron transport in trans-polyacetylene”, Phys. Rev. B, 65 (2002), 045207 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevB.65.045207'>10.1103/PhysRevB.65.045207</ext-link>

[16] S. Stafstr"om, “Nonadiabatic simulations of polaron dynamics”, Phys. Rev. B, 69 (2004), 235205 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevB.69.235205'>10.1103/PhysRevB.69.235205</ext-link>

[17] G. M. e Silva, “Electric-field effects on the competition between polarons and bipolarons in conjugated polymers”, Phys. Rev. B, 61 (2000), 10777 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevB.61.10777'>10.1103/PhysRevB.61.10777</ext-link>

[18] L. F. Roncaratti, R. Gargano, G. M. e Silva, “Theoretical temperature dependence of the charge-carrier mobility in semiconducting polymers”, J. Phys. Chem. A, 113 (2009), 14591 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/jp9041759'>10.1021/jp9041759</ext-link>

[19] L. A. Ribeiro, S. S. de Brito, P. H. de Oliveira Neto, “Trap-assisted charge transport at conjugated polymer interfaces”, Chem. Phys. Lett., 644 (2016), 121 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cplett.2015.12.006'>10.1016/j.cplett.2015.12.006</ext-link>

[20] S. Sun, Y. Zhang, X. Liu, Z. An, “Spectral analysis of polaron dynamics in conjugated polymers”, Phys. Chem., 123 (2019), 28569 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/acs.jpcc.9b07330'>10.1021/acs.jpcc.9b07330</ext-link>

[21] X. J. Liu, K. Gao, J. Y. Fu, Y. Li, J. H. Wei, S. J. Xie, “Effect of the electric field mode on the dynamic process of a polaron”, Phys. Rev. B, 74 (2006), 172301 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevB.74.172301'>10.1103/PhysRevB.74.172301</ext-link>

[22] L. A. Ribeiro, W. F. da Cunha, P. H. de Oliveria Neto, R. Gargano, G. M. e Silva, “Effects of temperature and electric field induced phase transitions on the dynamics of polarons and bipolarons”, New J. Chem., 37 (2013), 2829–2836 <ext-link ext-link-type='doi' href='https://doi.org/10.1039/c3nj00602f'>10.1039/c3nj00602f</ext-link>

[23] M. V.A. da Silva, P. H. de Oliveira Neto, W. F. da Cunha, R. Gargano, G. M. e Silva, “Supersonic quasi-particles dynamics in organic semiconductors”, Chem. Phys. Let., 550 (2012), 146 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cplett.2012.09.012'>10.1016/j.cplett.2012.09.012</ext-link>

[24] T. Astakhova, G. Vinogradov, “New aspects of polaron dynamics in electric field”, Eur. Phys. J. B, 92 (2019), 247 <ext-link ext-link-type='doi' href='https://doi.org/10.1140/epjb/e2019-100339-y'>10.1140/epjb/e2019-100339-y</ext-link>

[25] A. N. Korshunova, V. D. Lakhno, “Various regimes of charge transfer in a Holstein chain in a constant electric field depending on its intensity and the initial charge distribution”, Math. Biology and Bioinformatics, 7 (2018) <ext-link ext-link-type='doi' href='https://doi.org/10.17537/icmbb18.89'>10.17537/icmbb18.89</ext-link>

[26] A. P. Chetverikov, W. Ebeling, V. D. Lakhno, A. S. Shigaev, M. G. Velarde, “On the possibility that local mechanical forcing permits directionally-controlled long-range electron transfer along DNA-like molecular wires with no need of an external electric field”, Mechanical control of electrons. Eur. Phys. J. B, 89 (2016), 101 <ext-link ext-link-type='doi' href='https://doi.org/10.1140/epjb/e2016-60949-1'>10.1140/epjb/e2016-60949-1</ext-link>

[27] T. Astakhova, G. Vinogradov, “Single-electron model for polaron on dimerized lattice”, Math. Biol. Bioinf., 14 (2019), 625 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2019.14.625'>10.17537/2019.14.625</ext-link>

[28] T. Astakhova, G. Vinogradov, “Subsonic and supersonic polarons in one-electron model of polyacetylene”, Eur. Phys. J. B, 93 (2020), 127 <ext-link ext-link-type='doi' href='https://doi.org/10.1140/epjb/e2020--10113-7'>10.1140/epjb/e2020--10113-7</ext-link>

[29] T. Yu. Astakhova, G. A. Vinogradov, V. A. Kashin, “Polaron in an electric field as a generator of coherent lattice vibrations”, Rus. J. Phys. Chem. B, 12:6 (2018), 1 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/S1990793118050147'>10.1134/S1990793118050147</ext-link>