Assembly of a phenylalanine nanotube by the use of molecular dynamics manipulator
Matematičeskaâ biologiâ i bioinformatika, Tome 16 (2021), pp. 244-255.

Voir la notice de l'article provenant de la source Math-Net.Ru

Studies of the processes of self-organization and self-assembly of various complexly organized (including spiral) structures based on amino acids intensively carried out in recent years. Various methods of molecular modeling, including molecular dynamics (MD) methods, are developed. In this paper, we propose a new approach for a relatively simple technique for conducting MD simulation (MDS) of various molecular nanostructures, determining the trajectory of the MD run and forming the final structure: a molecular dynamic manipulator (MD manipulator). It is an imitation of the operation of an existing or imaginary device or structure by applying force to the existing initial structure in order to obtain a new final structure, having the same chemical composition, but with a different geometry (topology). The PUMA-CUDA software package was applied as the main MD modeling program, which uses the physics of the PUMA software package, developed by the laboratory headed by N.K. Balabaev. Using this MDS tool, you can investigate the formation of helical structures from a linear sequence of any amino acids variation. As an example, the applicability of the developed algorithm for assembling nanotubes from linear phenylalanine (Phe) chains of different chirality (left L-Phe and right D-Phe) is considered by including additional force effects in the molecular dynamics simulation program for these structures. During the MD run, the applied actions, which are the same for the left and right helices of the formed nanotubes, lead the system to an $\alpha$-helix structure. The work was carried out in an interactive mode using a number of additional programs, incl. trajectory analyzer program MD (TAMD). As a result, the modes that are most adequate for the formation of nanotubes of the right chirality D from the initial L-Phe monomer and nanotubes of the left chirality L from the D-Phe amino acid monomer were determined. The results obtained were compared with data from other works on modeling similar nanotubes of different chirality and experimental data. These are fully in line with the law of change in sign of chirality of molecular structures with complication of their hierarchical level of organization. The molecular animation of the assembly of a left-chiral nanotube from D-monomers is freely available at: http://lmd.impb.ru/Supplementary/PHE.avi.
@article{MBB_2021_16_a5,
     author = {I. V. Likhachev and V. S. Bystrov},
     title = {Assembly of a phenylalanine nanotube by the use of molecular dynamics manipulator},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {244--255},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2021_16_a5/}
}
TY  - JOUR
AU  - I. V. Likhachev
AU  - V. S. Bystrov
TI  - Assembly of a phenylalanine nanotube by the use of molecular dynamics manipulator
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2021
SP  - 244
EP  - 255
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2021_16_a5/
LA  - ru
ID  - MBB_2021_16_a5
ER  - 
%0 Journal Article
%A I. V. Likhachev
%A V. S. Bystrov
%T Assembly of a phenylalanine nanotube by the use of molecular dynamics manipulator
%J Matematičeskaâ biologiâ i bioinformatika
%D 2021
%P 244-255
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2021_16_a5/
%G ru
%F MBB_2021_16_a5
I. V. Likhachev; V. S. Bystrov. Assembly of a phenylalanine nanotube by the use of molecular dynamics manipulator. Matematičeskaâ biologiâ i bioinformatika, Tome 16 (2021), pp. 244-255. http://geodesic.mathdoc.fr/item/MBB_2021_16_a5/

[1] Calvin M., Chemical evolution: Molecular evolution towards the origin of living systems on the earth and elsewhere, Clarendon Press, Oxford, 1969 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/jobm.19770170116'>10.1002/jobm.19770170116</ext-link>

[2] A. L. Lehninger, Biochemistry, The Molecular Basis of Cell Structure and Function, 2nd Edition, Worth Publishers, Inc, New York, 1972

[3] P. Sharma, B. Rathi, J. Rodrigues, N. Gorobets, “Self-Assembled Peptide Nanoarchitectures: Applications and Future Aspects”, CTMC, 15:13 (2015), 1268–1289 <ext-link ext-link-type='doi' href='https://doi.org/10.2174/1568026615666150408105711'>10.2174/1568026615666150408105711</ext-link>

[4] A. C. Mendes, E. T. Baran, R. L. Reis, H. S. Azevedo, “Self-assembly in nature: using the principles of nature to create complex nanobiomaterials”, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol, 5:6 (2013), 582–612 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/wnan.1238'>10.1002/wnan.1238</ext-link>

[5] S. K. Arya, P. R. Solanki, M. Datta, B. D. Malhotra, “Recent advances in self-assembled monolayers based biomolecular electronic devices”, Biosens. Bioelectron, 24:9 (2009), 2810–2817 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.bios.2009.02.008'>10.1016/j.bios.2009.02.008</ext-link>

[6] L. Pauling, R. B. Corey, “Configurations of Polypeptide Chains With Favored Orientations Around Single Bonds: Two New Pleated Sheets”, PNAS, 37:11 (1951), 729–740 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.37.11.729'>10.1073/pnas.37.11.729</ext-link>

[7] D. G. Dalgleish, “Biophysical chemistry: Part III 'The behaviour of biological macromolecules: By CR Cantor and PR Schimmel. With two Appendices and Index to Parts I-III. pp 849–1371. WH Freeman, Oxford. 1980”, Biochemical Education, 9 (1981), 157–157 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0307--4412(81)90144--8'>10.1016/0307--4412(81)90144--8</ext-link>

[8] V. A. Tverdislov, “Chirality as a primary switch of hierarchical levels in molecular biological systems”, Biophysics, 58 (2013), 128–132 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/S0006350913010156'>10.1134/S0006350913010156</ext-link>

[9] V. A. Tverdislov, E. V. Malyshko, “On regularities in the spontaneous formation of structural hierarchies in chiral systems of nonliving and living matter”, Phys-Usp, 62 (2019), 354–363 <ext-link ext-link-type='doi' href='https://doi.org/10.3367/UFNe.2018.08.038401'>10.3367/UFNe.2018.08.038401</ext-link>

[10] V. S. Bystrov, P. S. Zelenovskiy, A. S. Nuraeva, S. Kopyl, O. A. Zhulyabina, V. A. Tverdislov, “Chiral Peculiar Properties of Self-Organization of Diphenylalanine Peptide Nanotubes: Modeling Of Structure and Properties”, Math. Biol. Bioinf, 14 (2019), 94–125 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2019.14.94'>10.17537/2019.14.94</ext-link>

[11] V. I. Tishkov, “Regeneratsiya kofaktorov v biosinteze khiralnykh soedinenii s pomoschyu degidrogenaz”, Vestn. Mosk. un-ta. Ser. 2. Khimiya, 43 (2002), 381–388

[12] E. V. Semenova, E. V. Malyshko, V. A. Tverdislov, “O vozmozhnoi vzaimosvyazi khiralnosti lekarstvennykh preparatov i khiralnykh struktur v biomakromolekulakh-mishenyakh”, Aktualnye voprosy biologicheskoi fiziki i khimii, 4 (2019), 346–351

[13] I. B. Beloglazova, O. S. Plekhanova, E. V. Katkova, K. D. Rysenkova, D. V. Stambol'skii, V. B. Sulimov, V. A. Tkachuk, “Molecular Modeling as a New Approach to the Development of Urokinase Inhibitors”, Bull. Exp. Biol. Med, 158 (2015), 700–704 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s10517--015--2839--3'>10.1007/s10517--015--2839--3</ext-link>

[14] A. V. Sulimov, D. C. Kutov, A. S. Taschilova, I. S. Ilin, N. V. Stolpovskaya, K. S. Shikhaliev, V. B. Sulimov, “In Search of Non-covalent Inhibitors of SARS-CoV-2 Main Protease: Computer Aided Drug Design Using Docking and Quantum Chemistry”, Supercomputing Frontiers and Innovations, 7 (2020) <ext-link ext-link-type='doi' href='https://doi.org/10.14529/jsfi200305'>10.14529/jsfi200305</ext-link>

[15] Orsi M., Self-assembling Biomaterials, 1st Edition (accessed 12.05.2021) <ext-link ext-link-type='uri' href='https://www.elsevier.com/books/self-assembling-biomaterials/azevedo/978-0-08-102015-9'>https://www.elsevier.com/books/self-assembling-biomaterials/azevedo/978-0-08-102015-9</ext-link>

[16] O. S. Lee, S. I. Stupp, G. C. Schatz, “Atomistic Molecular Dynamics Simulations of Peptide Amphiphile Self-Assembly into Cylindrical Nanofibers”, J. Am. Chem. Soc, 133 (2011), 3677–3683 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/ja110966y'>10.1021/ja110966y</ext-link>

[17] C. H. Gorbitz, “Nanotube Formation by Hydrophobic Dipeptides”, Chemistry A European Journal, 7 (2001), 5153–5159 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/1521-3765(20011203)7:23&lt;5153::AID-CHEM5153&gt;3.0.CO;2-N'>10.1002/1521-3765(20011203)7:23&lt;5153::AID-CHEM5153&gt;3.0.CO;2-N</ext-link>

[18] S. Scanlon, A. Aggeli, “Self-assembling peptide nanotubes”, Nano Today, 3 (2008), 22–30 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S1748--0132(08)70041--0'>10.1016/S1748--0132(08)70041--0</ext-link>

[19] J. Shklovsky, P. Beker, N. Amdursky, E. Gazit, G. Rosenman, “Bioinspired peptide nanotubes: Deposition technology and physical properties”, Materials Science and Engineering: B, 169 (2010), 62–66 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.mseb.2009.12.040'>10.1016/j.mseb.2009.12.040</ext-link>

[20] M. Reches, E. Gazit, “Controlled patterning of aligned self-assembled peptide nanotubes”, Nature Nanotechnology, 1 (2006), 195–200 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nnano.2006.139'>10.1038/nnano.2006.139</ext-link>

[21] L. Adler-Abramovich, E. Gazit, “The physical properties of supramolecular peptide assemblies: from building block association to technological applications”, Chem. Soc. Rev, 43 (2014), 6881–6893 <ext-link ext-link-type='doi' href='https://doi.org/10.1039/C4CS00164H'>10.1039/C4CS00164H</ext-link>

[22] N. Amdursky, M. Molotskii, D. Aronov, L. Adler-Abramovich, E. Gazit, G. Rosenman, “Blue luminescence based on quantum confinement at peptide nanotubes”, Nano Lett, 9 (2009), 3111–3115 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/nl9008265'>10.1021/nl9008265</ext-link>

[23] A. Nuraeva, S. Vasilev, D. Vasileva, P. Zelenovskiy, D. Chezganov, A. Esin, S. Kopyl, K. Romanyuk, V. Ya. Shur, A. L. Kholkin, “Evaporation-Driven Crystallization of Diphenylalanine Microtubes for Microelectronic Applications”, Crystal Growth & Design, 16 (2016), 1472–1479 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/acs.cgd.5b01604'>10.1021/acs.cgd.5b01604</ext-link>

[24] P. Zelenovskiy, I. Kornev, S. Vasilev, A. Kholkin, “On the origin of the great rigidity of self-assembled diphenylalanine nanotubes”, Phys. Chem. Chem. Phys., 18 (2016), 29681–29685 <ext-link ext-link-type='doi' href='https://doi.org/10.1039/C6CP04337B'>10.1039/C6CP04337B</ext-link>

[25] I. Bdikin, V. Bystrov, I. Delgadillo, J. Gracio, S. Kopyl, M. Wojtas, E. Mishina, A. Sigov, A. L. Kholkin, “Polarization switching and patterning in self-assembled peptide tubular structures”, Journal of Applied Physics, 111 (2012), 074104 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.3699202'>10.1063/1.3699202</ext-link>

[26] V. S. Bystrov, I. K. Bdikin, A. Heredia, R. C. Pullar, E. D. Mishina, A. S. Sigov, A. L. Kholkin, “Piezoelectricity and Ferroelectricity in Biomaterials: From Proteins to Self-assembled Peptide Nanotubes”, Piezoelectric Nanomaterials for Biomedical Applications. Nanomedicine and Nanotoxicology, eds. Ciofani G., A. Menciassi, Springer, 2012, 187–211 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/978--3-642--28044--3_7'>10.1007/978--3-642--28044--3_7</ext-link>

[27] Bystrov V., Computer Simulation Nanostructures: Bioferroelectric Peptide Nanotubes, LAP LAMBERT Academic Publishing, 2016 (accessed 12.05.2021) <ext-link ext-link-type='uri' href='https://www.morebooks.de/store/gb/book/computer-simulation-nanostructures:-bioferroelectric-peptide-nanotubes/isbn/978-3-659-92397-5'>https://www.morebooks.de/store/gb/book/computer-simulation-nanostructures:-bioferroelectric-peptide-nanotubes/isbn/978-3-659-92397-5</ext-link>

[28] V. S. Bystrov, E. Paramonova, I. Bdikin, S. Kopyl, A. Heredia, R. C. Pullar, A. L. Kholkin, “BioFerroelectricity: Diphenylalanine Peptide Nanotubes Computational Modeling and Ferroelectric Properties at the Nanoscale”, Ferroelectrics, 440 (2012), 3–24 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/00150193.2012.741923'>10.1080/00150193.2012.741923</ext-link>

[29] V. S. Bystrov, P. S. Zelenovskiy, A. S. Nuraeva, S. Kopyl, O. A. Zhulyabina, V. A. Tverdislov, “Molecular modeling and computational study of the chiral-dependent structures and properties of self-assembling diphenylalanine peptide nanotubes”, J. Mol. Model, 25 (2019), 199 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s00894--019--4080-x'>10.1007/s00894--019--4080-x</ext-link>

[30] P. S. Zelenovskiy, A. S. Nuraeva, S. G. Arkhipov, S. G. Vasilev, V. S. Bystrov, D. A. Gruzdev, M. Waliczek, V. Svitlyk, V. Ya. Shur, L. Mafra, A. L. Kholkin, “Chirality-Dependent Growth of Self-Assembled Diphenylalanine Microtubes”, Crystal Growth and Design, 19 (2019), 6414–6421 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/acs.cgd.9b00884'>10.1021/acs.cgd.9b00884</ext-link>

[31] V. S. Bystrov, J. Coutinho, P. S. Zelenovskiy, A. S. Nuraeva, S. Kopyl, S. V. Filippov, O. A. Zhulyabina, V. A. Tverdislov, “Molecular modeling and computational study of the chiral-dependent structures and properties of the self-assembling diphenylalanine peptide nanotubes, containing water molecules”, J. Mol. Model, 26 (2020), 326 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s00894--020--04564--5'>10.1007/s00894--020--04564--5</ext-link>

[32] V. Bystrov, J. Coutinho, P. Zelenovskiy, A. Nuraeva, S. Kopyl, O. Zhulyabina, V. Tverdislov, “Structures and Properties of the Self-Assembling Diphenylalanine Peptide Nanotubes Containing Water Molecules: Modeling and Data Analysis”, Nanomaterials, 10 (2020), 1999 <ext-link ext-link-type='doi' href='https://doi.org/10.3390/nano10101999'>10.3390/nano10101999</ext-link>

[33] G. Emtiazi, T. Zohrabi, L. Y. Lee, N. Habibi, A. Zarrabi, “Covalent diphenylalanine peptide nanotube conjugated to folic acid/magnetic nanoparticles for anti-cancer drug delivery”, Journal of Drug Delivery Science and Technology, 41 (2017), 90–98 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jddst.2017.06.005'>10.1016/j.jddst.2017.06.005</ext-link>

[34] R. F. Silva, D. R. Araujo, E. R. Silva, R. A. Ando, W. A. Alves, “L-diphenylalanine microtubes as a potential drug-delivery system: characterization, release kinetics, and cytotoxicity”, Langmuir, 29 (2013), 10205–10212 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/la4019162'>10.1021/la4019162</ext-link>

[35] H. W. German, S. Uyaver, U. H.E. Hansmann, “Self-Assembly of Phenylalanine-Based Molecules”, J. Phys. Chem. A, 119 (2015), 1609–1615 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/jp5077388'>10.1021/jp5077388</ext-link>

[36] L. Adler-Abramovich, L. Vaks, O. Carny, D. Trudler, A. Magno, A. Caflisch, D. Frenkel, E. Gazit, “Phenylalanine assembly into toxic fibrils suggests amyloid etiology in phenylketonuria”, Nat. Chem. Biol, 8 (2012), 701–706 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nchembio.1002'>10.1038/nchembio.1002</ext-link>

[37] J. Oroz, A. Valbuena, A. M. Vera, J. Mendieta, P. Gomez-Puertas, M. Carrion-Vazquez, “Nanomechanics of the Cadherin Ectodomain”, J. Biol. Chem, 286 (2011), 9405–9418 <ext-link ext-link-type='doi' href='https://doi.org/10.1074/jbc.M110.170399'>10.1074/jbc.M110.170399</ext-link>

[38] A. S. Lemak, N. K. Balabaev, “A Comparison Between Collisional Dynamics and Brownian Dynamics”, Molecular Simulation, 15 (1995), 223–231 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/08927029508022336'>10.1080/08927029508022336</ext-link>

[39] A. S. Lemak, N. K. Balabaev, “Molecular dynamics simulation of a polymer chain in solution by collisional dynamics method”, Journal of Computational Chemistry, 17 (1996), 1685–1695 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/(SICI)1096-987X(19961130)17:15&lt;1685::AID-JCC1&gt;3.0.CO;2-L'>10.1002/(SICI)1096-987X(19961130)17:15&lt;1685::AID-JCC1&gt;3.0.CO;2-L</ext-link>

[40] I. V. Likhachev, N. K. Balabaev, O. V. Galzitskaya, “Elastic and Non-elastic Properties of Cadherin Ectodomain: Comparison with Mechanical System”, Advances in Computer Science for Engineering and Education II, ICCSEEA 2019, Advances in Intelligent Systems and Computing, eds. Eds. Hu Z., S. Petoukhov, I. Dychka, M. He, Springer International Publishing, 2020, 555–566 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/978--3-030--16621--2_52'>10.1007/978--3-030--16621--2_52</ext-link>

[41] A. V. Glyakina, I. V. Likhachev, N. K. Balabaev, O. V. Galzitskaya, “Comparative mechanical unfolding studies of spectrin domains R15, R16 and R17”, J. Struct. Biol, 201 (2018), 162–170 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jsb.2017.12.003'>10.1016/j.jsb.2017.12.003</ext-link>

[42] A. V. Glyakina, I. V. Likhachev, N. K. Balabaev, O. V. Galzitskaya, “Mechanical stability analysis of the protein L immunoglobulin-binding domain by full alanine screening using molecular dynamics simulations”, Biotechnol. J., 10 (2015), 386–394 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/biot.201400231'>10.1002/biot.201400231</ext-link>

[43] A. V. Glyakina, I. V. Likhachev, N. K. Balabaev, O. V. Galzitskaya, “Right- and left-handed three-helix proteins. II. Similarity and differences in mechanical unfolding of proteins”, Proteins, 82 (2014), 90–102 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/prot.24373'>10.1002/prot.24373</ext-link>

[44] I. V. Likhachev, N. K. Balabaev, “Trajectory analyzer of molecular dynamics”, Mat. Biolog. Bioinform, 2 (2007), 120–129 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2007.2.120'>10.17537/2007.2.120</ext-link>

[45] I. V. Likhachev, N. K. Balabaev, O. V. Galzitskaya, “Available Instruments for Analyzing Molecular Dynamics Trajectories”, Open Biochem. J., 10 (2016), 1–11 <ext-link ext-link-type='doi' href='https://doi.org/10.2174/1874091X01610010001'>10.2174/1874091X01610010001</ext-link>

[46] HyperChem 8. Tools for Molecular Modeling, Professional Edition For Windows AC Release 8.0 USB (on CD), Hypercube. Inc., Gainesville, 2011