Dynamics of an epidemic model under the influence of environmental stress
Matematičeskaâ biologiâ i bioinformatika, Tome 16 (2021), pp. 201-243.

Voir la notice de l'article provenant de la source Math-Net.Ru

We have considered a compartmental epidemiological model with infectious disease to observe the influence of environmental stress on disease transmission. The proposed model is well-defined as the population at each compartment remains positive and bounded with time. Dynamical behaviour of the model is observed by the stability and bifurcation analysis at the equilibrium points. Also, numerical simulation supports the theoretical proofs and the result shows that the system undergoes a forward bifurcation around the disease-free equilibrium. Our results indicate that with the increase of environmental pollution, the overall infected population increases. Also, the disease transmission rate among the susceptible and stressed population from asymptomatically infected individuals plays a crucial role to make a system endemic. A corresponding optimal control problem has also been proposed to control the disease prevalence as well as to minimize the cost by choosing the vaccination policy before being infected and treatment policy to the infected as control variables. Numerical figures indicate that the vaccination provided to susceptible needs some time to reduce the disease transmission but the vaccination provided to stressed individuals works immediately after implementation. The treatment policy for symptomatically infected individuals works with a higher rate at an earlier stage but the intensity decreases with time. Simultaneous implementation of all control interventions is more useful to reduce the size of overall infective individuals and also to minimize the economic burden. Hence, this research clearly expresses the impact of environmental pollution (specifically the influence of environmental stress) on the disease transmission in the population.
@article{MBB_2021_16_a4,
     author = {Sangeeta Saha and Guruprasad Samanta},
     title = {Dynamics of an epidemic model under the influence of environmental stress},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {201--243},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2021_16_a4/}
}
TY  - JOUR
AU  - Sangeeta Saha
AU  - Guruprasad Samanta
TI  - Dynamics of an epidemic model under the influence of environmental stress
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2021
SP  - 201
EP  - 243
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2021_16_a4/
LA  - en
ID  - MBB_2021_16_a4
ER  - 
%0 Journal Article
%A Sangeeta Saha
%A Guruprasad Samanta
%T Dynamics of an epidemic model under the influence of environmental stress
%J Matematičeskaâ biologiâ i bioinformatika
%D 2021
%P 201-243
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2021_16_a4/
%G en
%F MBB_2021_16_a4
Sangeeta Saha; Guruprasad Samanta. Dynamics of an epidemic model under the influence of environmental stress. Matematičeskaâ biologiâ i bioinformatika, Tome 16 (2021), pp. 201-243. http://geodesic.mathdoc.fr/item/MBB_2021_16_a4/

[1] J. C. Holmes, “Parasites as threats to biodiversity in shrinking ecosystems”, Biodivers. Conserv., 5 (1996), 975–983 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/BF00054415'>10.1007/BF00054415</ext-link>

[2] M. C. Rigby, More Y., “Life-history trade-offs and immune defenses”, Evolutionary Biology of Host-Parasite Relationships: Theory Meets Reality, eds. Poulin R., S. Morand, A. Skorping, Elsevier Science, Amsterdam, 2000, 129–142

[3] M. A. Beck, O. A. Levander, “Host nutritional status and its effect on a viral pathogen”, J. Infect. Dis., 182 (2000), 93–96 <ext-link ext-link-type='doi' href='https://doi.org/10.1086/315918'>10.1086/315918</ext-link>

[4] R. A. Khan, “Parasitism in marine fish after chronic exposure to petroleum hydrocarbons in the laboratory and to the Exxon Valdez oil spill”, Bull. Environ. Contam. Toxicol., 44 (1990), 759–763 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/BF01701799'>10.1007/BF01701799</ext-link>

[5] C. D. Harvell, K. Kim, J. M. Burkholder, R. R. Colwell, P. R. Epstein, D. J. Grimes, E. E. Hofmann, E. K. Lipp, A. D. Osterhaus, R. M. Overstreet et al, “Emerging marine diseases-climate links and anthropogenic factors”, Science, 285 (1999), 1505–1510 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.285.5433.1505'>10.1126/science.285.5433.1505</ext-link>

[6] M. E. Scott, “The impact of infection and disease on animal populations: implications for conservation biology”, Conserv. Biol., 2 (1980), 40–56 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/j.1523--1739.1988.tb00334.x'>10.1111/j.1523--1739.1988.tb00334.x</ext-link>

[7] S. Blanford, Thomas M.B, C. Pugh, J. K. Pell, “Temperature checks the Red Queen? Resistance and virulence in a fluctuating environment”, Ecol. Lett., 6 (2003), 2–5 <ext-link ext-link-type='doi' href='https://doi.org/10.1046/j.1461--0248.2003.00387.x'>10.1046/j.1461--0248.2003.00387.x</ext-link>

[8] Dubey B., J. Biol. Syst., 18:03 (2010), A model for the effect of pollutant on human population dependent on a resource with environmental and health policy <ext-link ext-link-type='doi' href='https://doi.org/10.1142/S0218339010003378'>10.1142/S0218339010003378</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2725261'>2725261</ext-link>

[9] J. Shukla, A. Agrawal, B. Dubey, P. Sinha, “Existence and survival of two competing species in a polluted environment: a mathematical model”, J. Biol. Syst., 9:02 (2001), 89–103 <ext-link ext-link-type='doi' href='https://doi.org/10.1142/S0218339001000359'>10.1142/S0218339001000359</ext-link>

[10] J. Shukla, A. Misra, P. Chandra, “Mathematical modelling of the survival of a biological species in polluted water bodies”, Differ. Equ. Dyn. Syst., 15 (2007), 209–230 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3076184'>3076184</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1165.34365'>1165.34365</ext-link>

[11] P. K. Mandal, “Dioxin: a review of its environmental effects and its aryl hydrocarbon receptor biology”, J. Comp. Physiol. B, 175:4 (2005), 221–230 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s00360--005--0483--3'>10.1007/s00360--005--0483--3</ext-link>

[12] Brook R., “Cardiovascular effects of air pollution”, Clin. Sci., 115 (2008), 175–187 <ext-link ext-link-type='doi' href='https://doi.org/10.1042/CS20070444'>10.1042/CS20070444</ext-link>

[13] A. Nawahda, K. Yamashita, T. Ohara, J. Kurokawa, K. Yamaji, “Evaluation of premature mortality caused by exposure to PM$_{2.5}$ and ozone in East Asia: 2000, 2005, 2020”, Water Air Soil Pollut., 223:6 (2012), 3445–3459 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s11270--012--1123--7'>10.1007/s11270--012--1123--7</ext-link>

[14] Pope C. A. 3rd, Burnett R. T., Thun M. J., Calle E. E., Krewski D., Ito K., Thurston G. D., “Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution”, JAMA, 287:9 (2002), 1132–1141 <ext-link ext-link-type='doi' href='https://doi.org/10.1001/jama.287.9.1132'>10.1001/jama.287.9.1132</ext-link>

[15] Javan, S., Rahdar, S., Miri, M., B. Djahed, H. Kazemian, Y. Fakhri, H. Eslami, R. A. Fallahzadeh, A. Gholizadeh, M. Taghavi, “Modeling of the PM10 pollutant health effects in a semi-arid area: a case study in Zabol, Iran”, Model. Earth Syst. Environ., 7 (2021), 455–463 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s40808--020--00874-y'>10.1007/s40808--020--00874-y</ext-link>

[16] R. J. Laumbach, H. M. Kipen, “Respiratory health effects of air pollution: update on biomass smoke and traffic pollution”, J. Allergy Clin. Immunol., 129:1 (2012), 3–11 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jaci.2011.11.021'>10.1016/j.jaci.2011.11.021</ext-link>

[17] Salvi S., Paediatr. Respir. Rev., 8:4 (2007), Health effects of ambient air pollution in children <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.prrv.2007.08.008'>10.1016/j.prrv.2007.08.008</ext-link>

[18] L. M. Schell, M. V. Gallo, M. Denham, J. Ravenscroft, “Effects of pollution on human growth and development: an introduction”, J. Physiol. Anthropol., 25:1 (2006), 103–112 <ext-link ext-link-type='doi' href='https://doi.org/10.2114/jpa2.25.103'>10.2114/jpa2.25.103</ext-link>

[19] L. van Rossem, S. L. Rifas-Shiman, S. J. Melly, I. Kloog, H. Luttmann-Gibson, A. Zanobetti, B. A. Coull, J. D. Schwartz, M. A. Mittleman, E. Oken et al, “Prenatal air pollution exposure and newborn blood pressure”, Environ. Health Perspect., 123:4 (2015), 353–359 <ext-link ext-link-type='doi' href='https://doi.org/10.1289/ehp.1307419'>10.1289/ehp.1307419</ext-link>

[20] M. R. Schwarzman, M. P. Wilson, “New science for chemicals policy”, Science, 326:5956 (2009), 1065 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.1177537'>10.1126/science.1177537</ext-link>

[21] S. D. Richardson, “Disinfection by-products and other emerging contaminants in drinking water”, Trends Anal. Chem., 22:10 (2003), 666–684 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0165--9936(03)01003--3'>10.1016/S0165--9936(03)01003--3</ext-link>

[22] N. Hamidin, Yu, Q. J., Connell, D. W., “Human health risk assessment of chlorinated disinfection by-products in drinking water using a probabilistic approach”, Water Res., 42:13 (2008), 3263–3274 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.watres.2008.02.029'>10.1016/j.watres.2008.02.029</ext-link>

[23] A. S. Al-Mikhlafi, “Groundwater quality of yemen volcanic terrain and their geological and geochemical controls”, Arab. J. Geosci., 3:2 (2010), 193–205 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s12517--009--0068--7'>10.1007/s12517--009--0068--7</ext-link>

[24] S. A. Ahmad, M. Sayed, S. Barua, M. H. Khan, M. H. Faruquee, A. Jalil, S. A. Hadi, H. K. Talukder, “Arsenic in drinking water and pregnancy outcomes”, Environ. Health Perspect., 109:6 (2001), 629 <ext-link ext-link-type='doi' href='https://doi.org/10.1289/ehp.01109629'>10.1289/ehp.01109629</ext-link>

[25] K. Waller, S. H. Swan, G. DeLorenze, B. Hopkins, “Trihalomethanes in drinking water and spontaneous abortion”, Epidemiology, 9:2 (1998), 134–140 <ext-link ext-link-type='doi' href='https://doi.org/10.1097/00001648--199803000--00006'>10.1097/00001648--199803000--00006</ext-link>

[26] A. C. Collie, “Pharmaceutical contaminants in potable water: potential concerns for pregnant women and children”, EcoHealth, 4:2 (2007), 164–171 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s10393--007--0105--5'>10.1007/s10393--007--0105--5</ext-link>

[27] I. Hertz-Picciotto, H. Y. Park, M. Dostal, A. Kocan, T. Trnovec, R. Sram, “Prenatal exposures to persistent and non-persistent organic compounds and effects on immune system development”, Basic Clin. Pharmacol. Toxicol., 102:2 (2008), 146–154 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/j.1742--7843.2007.00190.x'>10.1111/j.1742--7843.2007.00190.x</ext-link>

[28] P. Grandjean, D. Bellinger, A. Bergman, S. Cordier, G. Davey-Smith, B. Eskenazi, D. Gee, K. Gray, M. Hanson, P. van den Hazel et al, “The faroes statement: human health effects of developmental exposure to chemicals in our environment”, Basic Clin. Pharmacol. Toxicol., 102:2 (2008), 73–75 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/j.1742--7843.2007.00114.x'>10.1111/j.1742--7843.2007.00114.x</ext-link>

[29] R. Raqib, S. Ahmed, R. Sultana, Y. Wagatsuma, D. Mondal, A. M. Hoque, B. Nermell, M. Yunus, S. Roy, L. A. Persson et al, “Effects of in utero arsenic exposure on child immunity and morbidity in rural Bangladesh”, Toxicol. Lett., 185:3 (2009), 197–202 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.toxlet.2009.01.001'>10.1016/j.toxlet.2009.01.001</ext-link>

[30] A. J. McMichael, R. E. Woodruff, S. Hales, “Climate change and human health: present and future risks”, Lancet, 367:9513 (2006), 859–869 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0140-6736(06)68079-3'>10.1016/S0140-6736(06)68079-3</ext-link>

[31] J. A. Patz, T. K. Graczyk, N. Geller, A. Y. Vittor, “Effects of environmental change on emerging parasitic diseases”, Int. J. Parasitol., 30:12 (2000), 1395–1405 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0020--7519(00)00141--7'>10.1016/S0020--7519(00)00141--7</ext-link>

[32] E. K. Lipp, A. Huq, R. R. Colwell, “Effects of global climate on infectious disease: the cholera model”, Clin. Microbiol. Rev., 15:4 (2002), 757–770 <ext-link ext-link-type='doi' href='https://doi.org/10.1128/CMR.15.4.757--770.2002'>10.1128/CMR.15.4.757--770.2002</ext-link>

[33] K. Dolschak, K. Gartner, T. W. Berger, “The impact of rising temperatures on water balance and phenology of European beech (Fagus sylvatica L.) stands”, Model. Earth Syst. Environ., 5 (2019), 1347–1363 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s40808--019--00602--1'>10.1007/s40808--019--00602--1</ext-link>

[34] E. Stemn, B. Kumi-Boateng, “Modelling of land surface temperature changes as determinant of urban heat island and risk of heat-related conditions in the Wassa West Mining Area of Ghana”, Model. Earth Syst. Environ., 6 (2020), 1727–1740 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s40808--020--00786-x'>10.1007/s40808--020--00786-x</ext-link>

[35] S. Ayub, G. Akhter, A. Ashraf, M. Iqbal, “Snow and glacier melt runoff simulation under variable altitudes and climate scenarios in Gilgit River Basin, Karakoram region”, Model. Earth Syst. Environ., 6 (2020), 1607–1618 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s40808--020--00777-y'>10.1007/s40808--020--00777-y</ext-link>

[36] S. Devi, R. P. Mishra, “A mathematical model to see the effects of increasing environmental temperature on plant-pollinator interactions”, Model. Earth Syst. Environ., 6 (2020), 1315–1329 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s40808--020--00763--4'>10.1007/s40808--020--00763--4</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=4318154'>4318154</ext-link>

[37] A. N. Traore, K. Mulaudzi, G. J. Chari, S. H. Foord, L. S. Mudau, T. G. Barnard, N. Potgieter, “The impact of human activities on microbial quality of rivers in the Vhembe District, South Africa”, Int. J. Environ. Res. Public Health., 13:8 (2016), 817 <ext-link ext-link-type='doi' href='https://doi.org/10.3390/ijerph13080817'>10.3390/ijerph13080817</ext-link>

[38] P. Roumagnac, F. X. Weill, C. Dolecek, S. Baker, S. Brisse, N. T. Chinh, T. A. Le, C. J. Acosta, J. Farrar, G. Dougan et al, “Evolutionary history of Salmonella typhi”, Science, 314:5803 (2006), 1301–1304 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.1134933'>10.1126/science.1134933</ext-link>

[39] M. M. Riggs, A. K. Sethi, T. F. Zabarsky, E. C. Eckstein, R. L. Jump, C. J. Donskey, “Asymptomatic Carriers Are a Potential Source for Transmission of Epidemic and Nonepidemic Clostridium difficile Strains among Long-Term Care Facility Residents”, Clinical Infectious Diseases, 45:8 (2007), 992–998 <ext-link ext-link-type='doi' href='https://doi.org/10.1086/521854'>10.1086/521854</ext-link>

[40] K. D. Lafferty, R. D. Holt, How should environmental stress affect the population dynamics of disease?, Ecol. Lett., 6:7 (2003), 654–664 <ext-link ext-link-type='doi' href='https://doi.org/10.1046/j.1461--0248.2003.00480.x'>10.1046/j.1461--0248.2003.00480.x</ext-link>

[41] J. K. Hale, Theory of functional Differential Equations, Springer-Verlag, Heidelberg, 1977 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/978--1-4612--9892--2'>10.1007/978--1-4612--9892--2</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=508721'>508721</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0352.34001'>0352.34001</ext-link>

[42] P. Van den Driessche, J. Watmough, “Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission”, Mathematical Biosciences, 180:1 (2002), 29–48 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0025--5564(02)00108--6'>10.1016/S0025--5564(02)00108--6</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1950747'>1950747</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1015.92036'>1015.92036</ext-link>

[43] L. Arriola, J. Hyman, Lecture notes on forward and adjoint sensitivity analysis with applications in Dynamical Systems, Linear Algebra and Optimisation, Mathematical and Theoretical Biology Institute, 2005

[44] Castillo-Chavez C., S. Blower, P. van den Driessche, D. Kirschner, Yakubu A. A. (eds., Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods, and Theory, The IMA Volumes in Mathematics and its Applications, 126, )Springer, 2002 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/978--1-4613--0065--6'>10.1007/978--1-4613--0065--6</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1938885'>1938885</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0989.00064'>0989.00064</ext-link>

[45] LaSalle J., The stability of dynamical systems, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1976 <ext-link ext-link-type='doi' href='https://doi.org/10.1137/1.9781611970432'>10.1137/1.9781611970432</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0364.93002'>0364.93002</ext-link>

[46] Castillo-Chavez C., Song B., “Dynamical models of tuberculosis and their applications”, Math. Biosci. Eng., 1 (2004), 361–404 <ext-link ext-link-type='doi' href='https://doi.org/10.3934/mbe.2004.1.361'>10.3934/mbe.2004.1.361</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2130673'>2130673</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1060.92041'>1060.92041</ext-link>

[47] S. Saha, G. P. Samanta, “Modelling and optimal control of HIV/AIDS prevention through PrEP and limited treatment”, Physica A: Statistical Mechanics and Its Applications, 516 (2019), 280–307 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.physa.2018.10.033'>10.1016/j.physa.2018.10.033</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3872461'>3872461</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1514.92062'>1514.92062</ext-link>

[48] S. Saha, G. P. Samanta, “Dynamics of an epidemic model with impact of toxins”, Physica A: Statistical Mechanics and Its Applications, 527 (2019), 121152 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.physa.2019.121152'>10.1016/j.physa.2019.121152</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3947756'>3947756</ext-link>

[49] S. Saha, G. P. Samanta, J. J. Nieto, “Epidemic model of COVID-19 outbreak by inducing behavioural response in population”, Nonlinear Dyn., 102 (2020), 455–487 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s11071-020-05896-w'>10.1007/s11071-020-05896-w</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1517.92040'>1517.92040</ext-link>

[50] H. Gaff, E. Schaefer, “Optimal control applied to vaccination and treatment strategies for various epidemiological models”, Mathematical Biosciences and Engineering, 6:3 (2009), 469–492 <ext-link ext-link-type='doi' href='https://doi.org/10.3934/mbe.2009.6.469'>10.3934/mbe.2009.6.469</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2549500'>2549500</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1169.49018'>1169.49018</ext-link>

[51] S. Kassa, A. Ouhinou, “The impact of self-protective measures in the optimal interventions for controlling infectious diseases of human population”, Journal of Mathematical Biology, 70:1–2 (2015), 213–236 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s00285-014-0761-3'>10.1007/s00285-014-0761-3</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3294971'>3294971</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1312.92038'>1312.92038</ext-link>

[52] H. Joshi, S. Lenhart, M. Li, L. Wang, “Optimal control methods applied to disease models”, Contemporary Mathematics, 410, 2006, 187–208 <ext-link ext-link-type='doi' href='https://doi.org/10.1090/conm/410/07728'>10.1090/conm/410/07728</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2277889'>2277889</ext-link>

[53] Behncke H., Optimal Control Applications and Methods, 21:6 (2000), Optimal control of deterministic epidemics <ext-link ext-link-type='doi' href='https://doi.org/10.1002/oca.678'>10.1002/oca.678</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1822058'>1822058</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1069.92518'>1069.92518</ext-link>

[54] Castilho C., “Optimal control of an epidemic through educational campaigns”, Electronic Journal of Differential Equations, 125 (2006), 1–11 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2255240'>2255240</ext-link>

[55] S. D. Hove-Musekwa, F. Nyabadza, C. Chiyaka, P. Das, A. Tripathi, Z. Mukandavire, “Modelling and analysis of the effects of malnutrition in the spread of cholera”, Math. Comput. Model., 53:9 (2011), 1583–1595 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.mcm.2010.11.060'>10.1016/j.mcm.2010.11.060</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2782845'>2782845</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1219.92053'>1219.92053</ext-link>

[56] R. Vardavas, S. Blower, The emergence of HIV transmitted resistance in Botswana: when will the WHO detection threshold be exceeded?, PLoS ONE, 2:1 (2007), e152 <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.pone.0000152'>10.1371/journal.pone.0000152</ext-link>

[57] D. Donnell, J. M. Baeten, J. Kiarie, K. K. Thomas, W. Stevens, C. R. Cohen, J. McIntyre, J. R. Lingappa, C. Celum, “Heterosexual HIV-1 transmission after initiation of antiretroviral therapy: a prospective cohort analysis”, Lancet, 375 (2010), 2092–2098 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0140-6736(10)60705-2'>10.1016/S0140-6736(10)60705-2</ext-link>

[58] O. Collins, K. Govinder, “Incorporating heterogeneity into the transmission dynamics of a waterborne disease model”, J. Theor. Biol., 356 (2014), 133–143 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jtbi.2014.04.022'>10.1016/j.jtbi.2014.04.022</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3227193'>3227193</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1412.92276'>1412.92276</ext-link>

[59] J. H. Tien, D. J. Earn, “Multiple transmission pathways and disease dynamics in a waterborne pathogen model”, Bull. Math. Biol., 72:6 (2010), 1506–1533 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s11538-010-9507-6'>10.1007/s11538-010-9507-6</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2671584'>2671584</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1198.92030'>1198.92030</ext-link>

[60] Kirk D., Optimal control theory: an introduction, Dover Publications, 2012

[61] E. Coddington, N. Levinson, Theory of ordinary differential equations, Tata McGraw-Hill Education, 1955 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=69338'>69338</ext-link>

[62] W. Fleming, R. Rishel, Deterministic and stochastic optimal control, Applications of Mathematics, 1, Springer, New York, 1975 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/978-1-4612-6380-7_1'>10.1007/978-1-4612-6380-7_1</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=454768'>454768</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0323.49001'>0323.49001</ext-link>

[63] Pontryagin L., Mathematical theory of optimal processes, CRC Press, 1987