Design and identification of potential HIV-1 entry inhibitors using \emph{In silico} click chemistry and molecular modeling methods
Matematičeskaâ biologiâ i bioinformatika, Tome 16 (2021), pp. 317-334.

Voir la notice de l'article provenant de la source Math-Net.Ru

An integrated approach including the click chemistry methodology, molecular docking, quantum mechanics, and molecular dynamics was used to computer-aided design of potential HIV-1 inhibitors able to block the membrane-proximal external region (MPER) of HIV-1 gp41, which plays an important role in the fusion of the viral and host cell membranes. Evaluation of the binding efficiency of the designed compounds to the HIV-1 MPER peptide was performed using the methods of molecular modeling, resulting in nine chemical compounds exhibiting high-affinity binding to this functionally important site of the trimeric “spike” of the viral envelope. The data obtained indicate that the identified compounds are promising for the development of novel antiviral drugs, HIV fusion inhibitors blocking the early stages of HIV infection.
@article{MBB_2021_16_a2,
     author = {A. M. Andrianov and A. M. Yushkevich and I. P. Bosko and A. D. Karpenko and Yu. V. Kornoushenko and K. V. Furs and A. V. Tuzikov},
     title = {Design and identification of potential {HIV-1} entry inhibitors using {\emph{In} silico} click chemistry and molecular modeling methods},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {317--334},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2021_16_a2/}
}
TY  - JOUR
AU  - A. M. Andrianov
AU  - A. M. Yushkevich
AU  - I. P. Bosko
AU  - A. D. Karpenko
AU  - Yu. V. Kornoushenko
AU  - K. V. Furs
AU  - A. V. Tuzikov
TI  - Design and identification of potential HIV-1 entry inhibitors using \emph{In silico} click chemistry and molecular modeling methods
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2021
SP  - 317
EP  - 334
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2021_16_a2/
LA  - ru
ID  - MBB_2021_16_a2
ER  - 
%0 Journal Article
%A A. M. Andrianov
%A A. M. Yushkevich
%A I. P. Bosko
%A A. D. Karpenko
%A Yu. V. Kornoushenko
%A K. V. Furs
%A A. V. Tuzikov
%T Design and identification of potential HIV-1 entry inhibitors using \emph{In silico} click chemistry and molecular modeling methods
%J Matematičeskaâ biologiâ i bioinformatika
%D 2021
%P 317-334
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2021_16_a2/
%G ru
%F MBB_2021_16_a2
A. M. Andrianov; A. M. Yushkevich; I. P. Bosko; A. D. Karpenko; Yu. V. Kornoushenko; K. V. Furs; A. V. Tuzikov. Design and identification of potential HIV-1 entry inhibitors using \emph{In silico} click chemistry and molecular modeling methods. Matematičeskaâ biologiâ i bioinformatika, Tome 16 (2021), pp. 317-334. http://geodesic.mathdoc.fr/item/MBB_2021_16_a2/

[1] H. B. Wang, Q. H. Mo, Z. Yang, “HIV vaccine research: The challenge and the way forward”, J. Immunol. Res, 2015 (2015), 503978 <ext-link ext-link-type='doi' href='https://doi.org/10.1155/2015/503978'>10.1155/2015/503978</ext-link>

[2] J. K. Mann, T. Ndung'u, “HIV-1 vaccine immunogen design strategies”, Virol. J, 12:3 (2015) <ext-link ext-link-type='doi' href='https://doi.org/10.1186/s12985--014--0221--0'>10.1186/s12985--014--0221--0</ext-link>

[3] D. Corti, A. Lanzavecchia, “Broadly neutralizing antiviral antibodies”, Ann. Rev. Immunol, 31 (2013), 705–742 <ext-link ext-link-type='doi' href='https://doi.org/10.1146/annurev-immunol-032712--095916'>10.1146/annurev-immunol-032712--095916</ext-link>

[4] E. J. Arts, D. J. Hazuda, “HIV-1 antiretroviral drug therapy”, Cold Spring Harb. Perspect. Med., 2 (2012), a007161 <ext-link ext-link-type='doi' href='https://doi.org/10.1101/cshperspect.a007161'>10.1101/cshperspect.a007161</ext-link>

[5] G. Kumari, R. K. Singh, “Highly active antiretroviral therapy for treatment of HIV/AIDS patients: current status and future prospects and the Indian scenario”, HIV & AIDS Rev, 11 (2012), 5–14 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/J.HIVAR.2012.02.003'>10.1016/J.HIVAR.2012.02.003</ext-link>

[6] R. D. MacArthur, R. M. Novak, “Maraviroc: The first of a new class of antiretroviral agents”, Clin. Infect. Dis., 47 (2008), 236–241 <ext-link ext-link-type='doi' href='https://doi.org/10.1086/589289'>10.1086/589289</ext-link>

[7] T. Matthews, M. Salgo, M. Greenberg, J. Chung, R. DeMasi, D. Bolognesi, “Enfuvirtide: The first therapy to inhibit the entry of HIV-1 into host CD4 lymphocytes”, Nat. Rev. Drug Discov, 3 (2004), 215–225 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nrd1331'>10.1038/nrd1331</ext-link>

[8] R. L. Bettiker, D. E. Koren, Jacobson J. M., “Ibalizumab”, Curr. Opin. HIV AIDS, 13:4 (2018), 354–358 <ext-link ext-link-type='doi' href='https://doi.org/10.1097/COH.0000000000000473'>10.1097/COH.0000000000000473</ext-link>

[9] S. A. Rizza, R. Bhatia, J. Zeuli, Z. Temesgen, “Ibalizumab for the treatment of multidrug-resistant HIV-1 infection”, Drugs Today (Barc), 55:1 (2019), 25–34 <ext-link ext-link-type='doi' href='https://doi.org/10.1358/dot.2019.55.1.2895651'>10.1358/dot.2019.55.1.2895651</ext-link>

[10] H. A. Blair, “Ibalizumab: A Review in multidrug-resistant HIV-1 infection”, Drugs, 80:2 (2020), 189–196 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s40265--020--01258--3'>10.1007/s40265--020--01258--3</ext-link>

[11] M. Kozal, J. Aberg, G. Pialoux, P. Cahn, M. Thompson, J. M. Molina, B. Grinsztejn, R. Diaz, A. Castagna, P. Kumar, G. Latiff, E. DeJesus et al, for the BRIGHTE Trial Team, “Fostemsavir in adults with multidrug-resistant HIV-1 infection”, N. Engl. J. Med, 382 (2020), 1232–1243 <ext-link ext-link-type='doi' href='https://doi.org/10.1056/NEJMoa1902493'>10.1056/NEJMoa1902493</ext-link>

[12] E. B. Chahine, “Fostemsavir: The first oral attachment inhibitor for treatment of HIV-1 infection”, Am. J. Health Syst. Pharm, 78:5 (2021), 376–388 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/ajhp/zxaa416'>10.1093/ajhp/zxaa416</ext-link>

[13] Y. T. Lai, “Small molecule HIV-1 attachment inhibitors: Discovery, mode of action and structural basis of inhibition”, Viruses, 13 (2021), 843 <ext-link ext-link-type='doi' href='https://doi.org/10.3390/v13050843'>10.3390/v13050843</ext-link>

[14] P. D. Kwong, J. R. Mascola, G. J. Nabel, “The changing face of HIV vaccine research”, J. Int. AIDS Soc, 15 (2012), 17407 <ext-link ext-link-type='doi' href='https://doi.org/10.7448/IAS.15.2.17407'>10.7448/IAS.15.2.17407</ext-link>

[15] J. Huang, G. Ofek, L. Laub, M. K. Louder, N. A. Doria-Rose, N. S. Longo, H. Imamichi, R. T. Bailer, B. Chakrabarti, S. K. Sharma, S. M. Alam, T. Wang, Y. Yang, B. Zhang, S. A. Migueles, R. Wyatt, B. F. Haynes, P. D. Kwong, J. R. Mascola, M. Connors, “Broad and potent neutralization of HIV-1 by a gp41-specific human antibody”, Nature, 491 (2012), 406–412 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nature11544'>10.1038/nature11544</ext-link>

[16] I. A. Kashin, A. V. Tuzikov, A. M. Andrianov, “Identifikatsiya novykh potentsialnykh ingibitorov belka gp41 VICh-1 metodami virtualnogo skrininga i molekulyarnogo modelirovaniya”, Matematicheskaya biologiya i bioinformatika, 10:2 (2015), 325–343 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2015.10.325'>10.17537/2015.10.325</ext-link>

[17] A. M. Andrianov, I. A. Kashyn, A. V. Tuzikov, “Potential HIV-1 fusion inhibitors mimicking gp41-specific broadly neutralizing antibody 10E8: In silico discovery and prediction of antiviral potency”, J. Bioinform. Comput. Biol, 4:4 (2018), 1022

[18] T. Xiao, G. Frey, Q. Fu, C. L. Lavine, D. A. Scott, M. S. Seaman, J. J. Chou, B. Chen, “HIV-1 fusion inhibitors targeting the membrane-proximal external region of Env spikes”, Nat. Chem. Biol, 16 (2020), 529–537 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41589--020--0496-y'>10.1038/s41589--020--0496-y</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=4450510'>4450510</ext-link>

[19] H. C. Kolb, M. G. Finn, K. B. Sharpless, “Click chemistry: Diverse chemical function from a few good reactions”, Angew. Chemie Int. Ed, 40:11 (2001), 2004–2021 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/1521-3773(20010601)40:11&lt;2004::AID-ANIE2004&gt;3.0.CO;2-5'>10.1002/1521-3773(20010601)40:11&lt;2004::AID-ANIE2004&gt;3.0.CO;2-5</ext-link>

[20] T. Sander, J. Freyss, M. von Korff, C. Rufener, “DataWarrior: An open-source program for chemistry aware data visualization and analysis”, J. Chem. Inf. Model, 55:2 (2015), 460–473 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/ci500588j'>10.1021/ci500588j</ext-link>

[21] T. Sterling, J. J. Irwin, “ZINC 15-ligand discovery for everyone”, J. Chem. Inf. Model, 55:11 (2015), 2324–2337 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/acs.jcim.5b00559'>10.1021/acs.jcim.5b00559</ext-link>

[22] J. D. Durrant, J. A. McCammon, “AutoClickChem: Click chemistry in silico”, PLoS Comput. Biol., 8 (2012), e1002397 <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.pcbi.1002397'>10.1371/journal.pcbi.1002397</ext-link>

[23] C. A. Lipinski, F. Lombardo, B. W. Dominy, P. J. Feeney, “Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings”, Adv. Drug Deliv. Rev, 46 (2001), 3–26 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0169-409X(00)00129-0'>10.1016/S0169-409X(00)00129-0</ext-link>

[24] A. Alhossary, S. D. Handoko, Y. Mu, Kwoh C. K., “Fast, accurate, and reliable molecular docking with QuickVina 2”, Bioinformatics, 31:13 (2015), 2214–2216 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/bioinformatics/btv082'>10.1093/bioinformatics/btv082</ext-link>

[25] M. Wojcikowski, P. J. Ballester, P. Siedlecki, “Performance of machine-learning scoring functions in structure-based virtual screening”, Sci. Rep., 7 (2017) <ext-link ext-link-type='doi' href='https://doi.org/10.1038/srep46710'>10.1038/srep46710</ext-link>

[26] C. Shen, Y. Hu, Z. Wang, H. Zhong, H. Zhang, H. Zhong, G. Wang, X. Yao, L. Xu, D. Cao, T. Hou, “Can machine learning consistently improve the scoring power of classical scoring functions? Insights into the role of machine learning in scoring functions”, Brief. Bioinf, 22:1 (2021), 497–514 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/bib/bbz173'>10.1093/bib/bbz173</ext-link>

[27] D. A. Case, K. Belfon, I. Y. Ben-Shalom, S. R. Brozell, D. S. Cerutti, T. E. Cheatham III, P. A. Kollman, AMBER 2020, University of California, 2020

[28] S. Genheden, U. Ryde, “The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinity”, Expert Opin. Drug Discov, 10:5 (2015), 449–461 <ext-link ext-link-type='doi' href='https://doi.org/10.1517/17460441.2015.1032936'>10.1517/17460441.2015.1032936</ext-link>

[29] J. P. Ryckaert, G. Ciccotti, H. J.C. Berendsen, “Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes”, J. Comput. Phys, 23:3 (1977), 327–341 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0021--9991(77)90098--5'>10.1016/0021--9991(77)90098--5</ext-link>

[30] J. J.P. Stewart, “Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters”, J. Mol. Model, 19 (2013), 1–32 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s00894--012--1667-x'>10.1007/s00894--012--1667-x</ext-link>

[31] A. V. Sulimov, D. C. Kutov, E. V. Katkova, V. B. Sulimov, “Combined docking with classical force field and quantum chemical semiempirical method PM7”, Adv. Bioinf, 5 (2017), 1–6 <ext-link ext-link-type='doi' href='https://doi.org/10.1155/2017/7167691'>10.1155/2017/7167691</ext-link>

[32] Klamt A., COSMO-RS: From quantum chemistry to fluid phase thermodynamics and drug design, 1st ed., Elsevier, Boston, MA, USA, 2005, 246 pp.

[33] A. Klamt, G. Schuurmann, “COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient”, J. Chem. Soc. Perkin Transac, 2 (1993), 799–805 <ext-link ext-link-type='doi' href='https://doi.org/10.1039/P29930000799'>10.1039/P29930000799</ext-link>

[34] J. D. Durrant, J. A. McCammon, “BINANA: A novel algorithm for ligand-binding characterization”, J. Mol. Graph. Model, 29:6 (2011), 888–893 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jmgm.2011.01.004'>10.1016/j.jmgm.2011.01.004</ext-link>

[35] J. D. Durrant, J. A. McCammon, “NNScore 2.0: A neural-network receptor-ligand scoring function”, J. Chem. Inf. Model., 51:11 (2011), 2897–2903 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/ci2003889'>10.1021/ci2003889</ext-link>

[36] A. Daina, O. Michielin, V. Zoete, “SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules”, Sci. Rep, 7 (2017), 42717 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/srep42717'>10.1038/srep42717</ext-link>

[37] K. Salzwedel, J. T. West, E. A. Hunter, “A conserved tryptophan-rich motif in the membrane-proximal region of the human immunodeficiency virus type 1 gp41 ectodomain is important for Env-mediated fusion and virus infectivity”, J. Virol, 73:3 (1999), 2469–2480 <ext-link ext-link-type='doi' href='https://doi.org/10.1128/JVI.73.3.2469--2480.1999'>10.1128/JVI.73.3.2469--2480.1999</ext-link>

[38] A. K. Bellamy-McIntyre, C. S. Lay, S. Bar, A. L. Maerz, H. Gert, G. H. Talbo, E. Heidi, H. E. Drummer, P. Poumbourios, “Functional links between the fusion peptide-proximal polar segment and membrane-proximal region of human immunodeficiency virus gp41 in distinct phases of membrane fusion”, J. Biol. Chem, 282 (2007), 23104–23116 <ext-link ext-link-type='doi' href='https://doi.org/10.1074/jbc.M703485200'>10.1074/jbc.M703485200</ext-link>