Variety of non-coding RNAs in eukaryotic genomes
Matematičeskaâ biologiâ i bioinformatika, Tome 16 (2021), pp. 256-298.

Voir la notice de l'article provenant de la source Math-Net.Ru

The genomes of large multicellular eukaryotes mainly consist of DNA that encodes not proteins, but RNAs. The unexpected discovery of approximately the same number of protein genes in Homo sapiens and Caenorhabditis elegans led to the understanding that it is not the number of proteins that determines the complexity of the development and functioning of an organism. The phenomenon of pervasive transcription of genomes is finding more and more confirmation. Data are emerging on new types of RNA that work in different cell compartments, are expressed at different stages of development, in different tissues and perform various functions. Their main purpose is fine regulation of the main cellular processes. The presence of a rich arsenal of regulators that can interact with each other and work on the principle of interchangeability determines the physiological complexity of the organism and its ability to adapt to changing environmental conditions. An overview of the currently known functional RNAs expressed in eukaryotic genomes is presented here. There is no doubt that in the near future, using high-tech transcriptome technologies, many new RNAs will be identified and characterized. But it is likely that many of the expressed transcripts do not have a function, but are an evolutionary reserve of organisms.
@article{MBB_2021_16_a12,
     author = {N. N. Nazipova},
     title = {Variety of non-coding {RNAs} in eukaryotic genomes},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {256--298},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2021_16_a12/}
}
TY  - JOUR
AU  - N. N. Nazipova
TI  - Variety of non-coding RNAs in eukaryotic genomes
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2021
SP  - 256
EP  - 298
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2021_16_a12/
LA  - ru
ID  - MBB_2021_16_a12
ER  - 
%0 Journal Article
%A N. N. Nazipova
%T Variety of non-coding RNAs in eukaryotic genomes
%J Matematičeskaâ biologiâ i bioinformatika
%D 2021
%P 256-298
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2021_16_a12/
%G ru
%F MBB_2021_16_a12
N. N. Nazipova. Variety of non-coding RNAs in eukaryotic genomes. Matematičeskaâ biologiâ i bioinformatika, Tome 16 (2021), pp. 256-298. http://geodesic.mathdoc.fr/item/MBB_2021_16_a12/

[1] International Human Genome Sequencing Consortium, “Finishing the euchromatic sequence of the human genome”, Nature, 431 (2004), 931–945 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nature03001'>10.1038/nature03001</ext-link>

[2] ENCODE Project Consortium, “An integrated encyclopedia of DNA elements in the human genome”, Nature, 489 (2012), 57–74 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nature11247'>10.1038/nature11247</ext-link>

[3] M. B. Clark, P. P. Amaral, F. J. Schlesinger, M. E. Dinger, R. J. Taft, J. L. Rinn, C. P. Ponting, P. F. Stadler, K. V. Morris, A. Morillon et al, “The reality of pervasive transcription”, PLoS Biol, 9 (2011), e1000625 <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.pbio.1000625'>10.1371/journal.pbio.1000625</ext-link>

[4] P. Carninci, T. Kasukawa, S. Katayama, J. Gough, M. C. Frith, N. Maeda, R. Oyama, T. Ravasi, B. Lenhard, C. Wells et al, “The transcriptional landscape of the mammalian genome”, Science, 309 (2005), 1559–1563 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.1112014'>10.1126/science.1112014</ext-link>

[5] S. Katayama, Y. Tomaru, T. Kasukawa, K. Waki, M. Nakanishi, M. Nakamura, H. Nishida, C. C. Yap, M. Suzuki, J. Kawai et al, “Antisense transcription in the mammalian transcriptome”, Science, 309 (2005), 1564–1566 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.1112009'>10.1126/science.1112009</ext-link>

[6] E. Birney, J. A. Stamatoyannopoulos, A. Dutta, R. Guigo, T. R. Gingeras, E. H. Margulies, Z. Weng, M. Snyder, E. T. Dermitzakis, R. E. Thurman et al, “Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project”, Nature, 447 (2007), 799–816 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nature05874'>10.1038/nature05874</ext-link>

[7] P. Kapranov, J. Cheng, S. Dike, D. A. Nix, R. Duttagupta, A. T. Willingham, P. F. Stadler, J. Hertel, J. Hackermuller, I. L. Hofacker et al, “RNA maps reveal new RNA classes and a possible function for pervasive transcription”, Science, 316 (2007), 1484–1488 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.1138341'>10.1126/science.1138341</ext-link>

[8] P. Bertone, V. Stolc, T. E. Royce, J. S. Rozowsky, A. E. Urban, X. Zhu, J. L. Rinn, W. Tongprasit, M. Samanta, S. Weissman et al, “Global identification of human transcribed sequences with genome tiling arrays”, Science, 306 (2004), 2242–2246 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.1103388'>10.1126/science.1103388</ext-link>

[9] J. Cheng, P. Kapranov, J. Drenkow, S. Dike, S. Brubaker, S. Patel, J. Long, D. Stern, H. Tammana, G. Helt et al, “Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution”, Science, 308 (2005), 1149–1154 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.1108625'>10.1126/science.1108625</ext-link>

[10] P. Kapranov, S. E. Cawley, J. Drenkow, S. Bekiranov, R. L. Strausberg, S. P.A. Fodor, T. R. Gingeras, “Large-scale transcriptional activity in chromosomes 21 and 22”, Science, 296 (2002), 916–919 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.1068597'>10.1126/science.1068597</ext-link>

[11] J. L. Rinn, G. Euskirchen, P. Bertone, R. Martone, N. M. Luscombe, S. Hartman, P. M. Harrison, F. K. Nelson, P. Miller, M. Gerstein et al, “The transcriptional activity of human Chromosome 22”, Genes Dev, 17 (2003), 529–540 <ext-link ext-link-type='doi' href='https://doi.org/10.1101/gad.1055203'>10.1101/gad.1055203</ext-link>

[12] P. Kapranov, A. T. Willingham, T. R. Gingeras, “Genome-wide transcription and the implications for genomic organization”, Nat. Rev. Genet, 8 (2007), 413–423 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nrg2083'>10.1038/nrg2083</ext-link>

[13] J. Wang, J. Zhang, H. Zheng, J. Li, D. Liu, H. Li, R. Samudrala, J. Yu, G. K. Wong, “Mouse transcriptome: Neutral evolution of 'non-coding' complementary DNAs”, Nature, 431 (2004), 757 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nature03016'>10.1038/nature03016</ext-link>

[14] Struhl K, “Transcriptional noise and the fidelity of initiation by RNA polymerase II”, Nat. Struct. Mol. Biol., 14 (2007), 103–105 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nsmb0207--103'>10.1038/nsmb0207--103</ext-link>

[15] M. Ebisuya, T. Yamamoto, M. Nakajima, E. Nishida, “Ripples from neighbouring transcription”, Nat. Cell Biol, 10 (2008), 1106–1113 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/ncb1771'>10.1038/ncb1771</ext-link>

[16] A. F. Palazzo, E. S. Lee, “Non-coding RNA: what is functional and what is junk?”, Front. Genet, 6 (2015) <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fgene.2015.00002'>10.3389/fgene.2015.00002</ext-link>

[17] J. S. Mattick, R. J. Taft, G. J. Faulkner, “A global view of genomic information-moving beyond the gene and the master regulator”, Trends Genet, 26 (2010), 21–28 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.tig.2009.11.002'>10.1016/j.tig.2009.11.002</ext-link>

[18] A. Huttenhofer, J. Brosius, J. P. Bachellerie, “RNomics: identification and function of small, non-messenger RNAs”, Curr. Opin. Chem. Biol, 6 (2002), 835–843 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/s1367--5931(02)00397--6'>10.1016/s1367--5931(02)00397--6</ext-link>

[19] A. Huttenhofer, P. Schattner, N. Polacek, Non-coding RNAs: hope or hype?, Trends Genet, 21 (2005), 289–297 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.tig.2005.03.007'>10.1016/j.tig.2005.03.007</ext-link>

[20] S. R. Eddy, “Non-coding RNA genes and the modern RNA world”, Nature Reviews Genetics, 2 (2001), 919–929 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/35103511'>10.1038/35103511</ext-link>

[21] M. Kawano, A. A. Reynolds, J. Miranda-Rios, G. Storz, “Detection of 5' and 3'-UTR-derived small RNAs and cis-encoded antisense RNAs in Escherichia coli”, Nucleic Acids Res, 33 (2005), 1040–1050 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gki256'>10.1093/nar/gki256</ext-link>

[22] J. S. Mattick, RNA regulation: a new genetics?, Nat. Rev. Genet, 5 (2004), 316–323 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nrg1321'>10.1038/nrg1321</ext-link>

[23] J. S. Mattick, I. V. Makunin, “Small regulatory RNAs in mammals”, Hum. Mol. Genet., 14 (2005), R121-R132 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/hmg/ddi101'>10.1093/hmg/ddi101</ext-link>

[24] R. A. Weinberg, S. Penman, “Small molecular weight monodisperse nuclear RNA”, J. Mol. Biol, 38 (1968), 289–304 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0022-2836(68)90387-2'>10.1016/0022-2836(68)90387-2</ext-link>

[25] G. W. Zieve, “Two groups of small stable RNAs”, Cell, 25 (1981), 296–297 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0092-8674(81)90046-5'>10.1016/0092-8674(81)90046-5</ext-link>

[26] H. Busch, R. Reddy, L. Rothblum, Choi Y. C., “SnRNAs, SnRNPs, RNA processing”, Annu. Rev. Biochem, 51 (1982), 617–654 <ext-link ext-link-type='doi' href='https://doi.org/10.1146/annurev.bi.51.070182.003153'>10.1146/annurev.bi.51.070182.003153</ext-link>

[27] V. W. Yang, M. R. Lerner, J. A. Steitz, S. J. Flint, “A small nuclear ribonucleoprotein is required for splicing of adenoviral early RNA sequences”, PNAS, 78 (1981), 1371–1375 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.78.3.1371'>10.1073/pnas.78.3.1371</ext-link>

[28] Y. T. Yu, E. C. Scharl, C. M. Smith, Steitz J. A., The RNA World, 2nd edn, eds. Gesteland R. F., T. R. Cech, J. F. Atkins, Cold Spring Harbor Laboratory Press, New York, 1999, 487–524

[29] C. B. Burge, T. Tuschl, P. A. Sharp, “Splicing of precursors to mRNAs by the spliceosome”, The RNA World, 2nd edn., eds. Gesteland R. F., T. R. Cech, J. F. Atkins, Cold Spring Harbor Laboratory Press, New York, 1999, 525–560

[30] W. Y. Tarn, J. A. Steitz, “Highly diverged U4 and U6 small nuclear RNAs required for splicing rare AT-AC introns”, Science, 273 (1996), 1824–1832 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.273.5283.1824'>10.1126/science.273.5283.1824</ext-link>

[31] P. A. Sharp, C. B. Burge, “Classification of introns: U2-type or U12-type”, Cell, 91 (1997), 875–879 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0092-8674(00)80479-1'>10.1016/S0092-8674(00)80479-1</ext-link>

[32] B. C. Stark, R. Kole, E. J. Bowman, S. Altman, “Ribonuclease P: an enzyme with an essential RNA component”, PNAS, 75 (1978), 3717–3721 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.75.8.3717'>10.1073/pnas.75.8.3717</ext-link>

[33] P. Walter, G. Blobel, “Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic reticulum”, Nature, 299 (1982), 691–698 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/299691a0'>10.1038/299691a0</ext-link>

[34] Lewin R., “Surprising discovery with a small RNA”, Science, 218 (1982), 777–778 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.6182614'>10.1126/science.6182614</ext-link>

[35] Bartel D. P., “MicroRNAs: genomics, biogenesis, mechanism, function”, Cell, 116 (2004), 281–297 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0092-8674(04)00045-5'>10.1016/S0092-8674(04)00045-5</ext-link>

[36] D. P. Bartel, C. Z. Chen, “Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs”, Nat. Rev. Genet, 5 (2004), 396–400 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nrg1328'>10.1038/nrg1328</ext-link>

[37] L. Fragnet, E. Kut, D. Rasschaert, “Comparative functional study of the viral telomerase RNA based on natural mutations”, J. Biol. Chem, 280 (2005), 23502–23515 <ext-link ext-link-type='doi' href='https://doi.org/10.1074/jbc.M501163200'>10.1074/jbc.M501163200</ext-link>

[38] K. Plath, S. Mlynarczyk-Evans, D. A. Nusinow, B. Panning, “Xist RNA and the mechanism of X chromosome inactivation”, Annu. Rev. Genet, 36 (2002), 233–278 <ext-link ext-link-type='doi' href='https://doi.org/10.1146/annurev.genet.36.042902.092433'>10.1146/annurev.genet.36.042902.092433</ext-link>

[39] N. Brockdorff, A. Ashworth, G. F. Kay, V. M. McCabe, D. P. Norris, P. J. Cooper, S. Swift, S. Rastan, “The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus”, Cell, 71 (1992), 515–526 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0092--8674(92)90519-I'>10.1016/0092--8674(92)90519-I</ext-link>

[40] R. L. Kelley, M. L. Kuroda, “Noncoding RNA genes in dosage compensation and imprinting”, Cell, 103 (2000), 9–12 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0092-8674(00)00099-4'>10.1016/S0092-8674(00)00099-4</ext-link>

[41] F. Sleutels, R. Zwart, D. P. Barlow, “The non-coding Air RNA is required for silencing autosomal imprinted genes”, Nature, 415 (2002), 810–813 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/415810a'>10.1038/415810a</ext-link>

[42] I. Ulitsky, Bartel D. P., “lincRNAs: genomics, evolution, mechanisms”, Cell, 154 (2013), 26–46 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cell.2013.06.020'>10.1016/j.cell.2013.06.020</ext-link>

[43] K. O. Mutz, A. Heilkenbrinker, Lönne M., Walter J. G., Stahl F., “Transcriptome analysis using next-generation sequencing”, Current Opinion in Biotechnology, 24:1 (2013), 22–30 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.copbio.2012.09.004'>10.1016/j.copbio.2012.09.004</ext-link>

[44] R. C. Lee, R. L. Feinbaum, V. The C. Ambros, “elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14”, Cell, 75 (1993), 843–854 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0092-8674(93)90529-Y'>10.1016/0092-8674(93)90529-Y</ext-link>

[45] M. R. Fabian, N. Sonenberg, W. Filipowicz, “Regulation of mRNA translation and stability by microRNAs”, Annu. Rev. Biochem, 79 (2010), 351–379 <ext-link ext-link-type='doi' href='https://doi.org/10.1146/annurev-biochem-060308-103103'>10.1146/annurev-biochem-060308-103103</ext-link>

[46] U. Bissels, S. Wild, S. Tomiuk, A. Holste, M. Hafner, T. Tuschl, A. Bosio, “Absolute quantification of microRNAs by using a universal reference”, RNA, 15 (2009), 2375–2384 <ext-link ext-link-type='doi' href='https://doi.org/10.1261/rna.1754109'>10.1261/rna.1754109</ext-link>

[47] A. J. Hamilton, D. C. Baulcombe, “A species of small antisense RNA in posttranscriptional gene silencing in plants”, Science, 286 (1999), 950–952 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.286.5441.950'>10.1126/science.286.5441.950</ext-link>

[48] H. Ishizu, H. Siomi, M. C. Siomi, “Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines”, Genes Dev, 26 (2012), 2361–2373 <ext-link ext-link-type='doi' href='https://doi.org/10.1101/gad.203786.112'>10.1101/gad.203786.112</ext-link>

[49] T. B. Hansen, T. I. Jensen, B. H. Clausen, J. B. Bramsen, B. Finsen, C. K. Damgaard, J. Kjems, “Natural RNA circles function as efficient microRNA sponges”, Nature, 495:7441 (2013), 384–388 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nature11993'>10.1038/nature11993</ext-link>

[50] S. Memczak, M. Jens, A. Elefsinioti, F. Torti, J. Krueger, A. Rybak, L. Maier, S. D. Mackowiak, L. H. Gregersen, M. Munschauer et al, “Circular RNAs are a large class of animal RNAs with regulatory potency”, Nature, 495:7441 (2013), 333–338 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nature11928'>10.1038/nature11928</ext-link>

[51] P. N. Valdmanis, M. A. Kay, “The expanding repertoire of circular RNAs”, Mol. Ther, 21:6 (2013), 1112–1114 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/mt.2013.101'>10.1038/mt.2013.101</ext-link>

[52] S. R. Lee, K. Collins, “Starvation-induced cleavage of the tRNA anticodon loop in Tetrahymena thermophila”, J. Biol. Chem, 280 (2005), 42744–42749 <ext-link ext-link-type='doi' href='https://doi.org/10.1074/jbc.M510356200'>10.1074/jbc.M510356200</ext-link>

[53] H. J. Haiser, F. V. Karginov, G. J. Hannon, M. A. Elliot, “Developmentally regulated cleavage of tRNAs in the bacterium Streptomyces coelicolor”, Nucleic Acids Res, 36 (2008), 732–741 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkm1096'>10.1093/nar/gkm1096</ext-link>

[54] L. L. Chak, J. Mohammed, E. C. Lai, G. Tucker-Kellogg, Okamura K., “A deeply conserved, noncanonical miRNA hosted by ribosomal DNA”, RNA, 21 (2015), 375–384 <ext-link ext-link-type='doi' href='https://doi.org/10.1261/rna.049098.114'>10.1261/rna.049098.114</ext-link>

[55] S. Asha, E. V. Soniya, “The sRNAome mining revealed existence of unique signature small RNAs derived from 5.8SrRNA from Piper nigrum and other plant lineages”, Sci. Rep, 7 (2017), 41052 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/srep41052'>10.1038/srep41052</ext-link>

[56] Z. Chen, Y. Sun, X. Yang, Z. Wu, K. Guo, X. Niu, Q. Wang, J. Ruan, W. Bu, S. Gao, “Two featured series of rRNA-derived RNA fragments (rRFs) constitute a novel class of small RNAs”, PLoS One, 12 (2017), e0176458 <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.pone.0176458'>10.1371/journal.pone.0176458</ext-link>

[57] Cho J., “Transposon-Derived Non-coding RNAs and Their Function in Plants”, Front. Plant Sci, 9 (2018), 600 <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fpls.2018.00600'>10.3389/fpls.2018.00600</ext-link>

[58] S. F. Wolf, D. Schlessinger, “Nuclear metabolism of ribosomal RNA in growing, methionine-limited, and ethionine-treated HeLa cells”, Biochemistry (Mosc.), 16 (1977), 2783–2791 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/bi00631a031'>10.1021/bi00631a031</ext-link>

[59] P. Natsidis, P. H. Schiffer, Salvador-Martínez I., Telford M. J., “Computational discovery of hidden breaks in 28S ribosomal RNAs across eukaryotes and consequences for RNA Integrity Numbers”, Sci. Rep., 9 (2019), 19477 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41598--019--55573--1'>10.1038/s41598--019--55573--1</ext-link>

[60] C. Waldron, F. Lacroute, “Effect of growth rate on the amounts of ribosomal and transfer ribonucleic acids in yeast”, J. Bacteriol, 122 (1975), 855–865 <ext-link ext-link-type='doi' href='https://doi.org/10.1128/jb.122.3.855-865.1975'>10.1128/jb.122.3.855-865.1975</ext-link>

[61] A. G. Matera, R. M. Terns, M. P. Terns, “Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs”, Nat. Rev. Mol. Cell Biol., 8 (2007), 209–220 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nrm2124'>10.1038/nrm2124</ext-link>

[62] G. Dieci, M. Preti, B. Montanini, “Eukaryotic snoRNAs: a paradigm for gene expression flexibility”, Genomics, 94 (2009), 83–88 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.ygeno.2009.05.002'>10.1016/j.ygeno.2009.05.002</ext-link>

[63] A. Aravin, T. Tuschl, “Identification and characterization of small RNAs involved in RNA silencing”, FEBS Lett, 579:26 (2005), 5830–5840 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.febslet.2005.08.009'>10.1016/j.febslet.2005.08.009</ext-link>

[64] M. Siomi, K. Sato, D. Pezic, A. A. Aravin, “PIWI-interacting small RNAs: the vanguard of genome defence”, Nat. Rev. Mol. Cell. Biol, 12 (2011), 246–258 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nrm3089'>10.1038/nrm3089</ext-link>

[65] Y. S. Lee, Y. Shibata, A. Malhotra, A. Dutta, “A novel class of small RNAs: tRNA-derived RNA fragments (tRFs)”, Genes Dev, 23 (2009), 2639–2649 <ext-link ext-link-type='doi' href='https://doi.org/10.1101/gad.1837609'>10.1101/gad.1837609</ext-link>

[66] L. Guan, A. Grigoriev, “Computational meta-analysis of ribosomal RNA fragments: potential targets and interaction mechanisms”, Nucleic Acids Res, 49:7 (2021), 4085–4103 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkab190'>10.1093/nar/gkab190</ext-link>

[67] J. E. Wilusz, H. Sunwoo, D. L. Spector, “Long noncoding RNAs: functional surprises from the RNA world”, Genes Dev, 23:13 (2009), 1494–1504 <ext-link ext-link-type='doi' href='https://doi.org/10.1101/gad.1800909'>10.1101/gad.1800909</ext-link>

[68] L. Chen, C. Huang, X. Wang, G. Shan, “Circular RNAs in eukaryotic cells”, Curr. Genom, 16:5 (2015), 312–318 <ext-link ext-link-type='doi' href='https://doi.org/10.2174/1389202916666150707161554'>10.2174/1389202916666150707161554</ext-link>

[69] S. A. Gerbi, “Expansion segments: regions of variable size that interrupt the universal core secondary structure of ribosomal RNA”, Ribosomal RNA: Structure, Evolution, Processing and Function in Protein Synthesis, eds. R. A. Zimmermann and A. E. Dahlberg, Telford CRC Press, Boca Raton, FL, 1996, 71–87

[70] J. P. Armache, A. Jarasch, A. M. Anger, E. Villa, T. Becker, S. Bhushan, F. Jossinet, M. Habeck, G. Dindar, S. Franckenberg et al, “Cryo-EM structure and rRNA model of a translating eukaryotic 80S ribosome at 5.5-A resolution”, PNAS, 107 (2010), 19748–19753 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.1009999107'>10.1073/pnas.1009999107</ext-link>

[71] A. M. Anger, J. P. Armache, O. Berninghausen, M. Habeck, M. Subklewe, D. N. Wilson, R. Beckmann, “Structures of the human and Drosophila 80S ribosome”, Nature, 497 (2013), 80–85 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nature12104'>10.1038/nature12104</ext-link>

[72] K. Fujii, T. T. Susanto, S. Saurabh, M. Barna, “Decoding the function of expansion segments in ribosomes”, Mol. Cell, 72 (2018), 1013–1020 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.molcel.2018.11.023'>10.1016/j.molcel.2018.11.023</ext-link>

[73] P. P. Chan, T. M. Lowe, “GtRNAdb: a database of transfer RNA genes detected in genomic sequence”, Nucleic Acids Res., 37 (2009), D93-D97 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkn787'>10.1093/nar/gkn787</ext-link>

[74] M. Parisien, X. Wang, T. Pan, “Diversity of human tRNA genes from the 1000-genomes project”, RNA Biol, 10 (2013), 1853–1867 <ext-link ext-link-type='doi' href='https://doi.org/10.4161/rna.27361'>10.4161/rna.27361</ext-link>

[75] Orioli A., “tRNA biology in the omics era: stress signalling dynamics and cancer progression”, Bioessays, 39 (2017), 1600158 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/bies.201600158'>10.1002/bies.201600158</ext-link>

[76] S. Kirchner, Z. Ignatova, “Emerging roles of tRNA in adaptive translation, signalling dynamics and disease”, Nat. Rev. Genet, 16 (2015), 98–112 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nrg3861'>10.1038/nrg3861</ext-link>

[77] S. Q. Huang, B. Sun, Z. P. Xiong, Y. Shu, H. H. Zhou, W. Zhang, J. Xiong, Q. Li, “The dysregulation of tRNAs and tRNA derivatives in cancer”, J. Exp. Clin. Cancer Res, 37 (2018)

[78] M. Santos, A. Fidalgo, A. S. Varanda, C. Oliveira, M. A.S. Santos, “tRNA deregulation and its consequences in cancer”, Trends Mol. Med, 25 (2019), 853–865 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.molmed.2019.05.011'>10.1016/j.molmed.2019.05.011</ext-link>

[79] N. Gomez-Roman, C. Grandori, R. N. Eisenman, R. J. White, “Direct activation of RNA polymerase III transcription by c-Myc”, Nature, 421 (2003), 290–294 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nature01327'>10.1038/nature01327</ext-link>

[80] Z. A. Felton-Edkins, J. A. Fairley, E. L. Graham, I. M. Johnston, R. J. White, P. H. Scott, “The mitogen-activated protein (MAP) kinase ERK induces tRNA synthesis by phosphorylating TFIIIB”, EMBO J, 22 (2003), 2422–2432 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/emboj/cdg240'>10.1093/emboj/cdg240</ext-link>

[81] Y. Wei, C. K. Tsang, X. F. Zheng, “Mechanisms of regulation of RNA polymerase III-dependent transcription by TORC1”, EMBO J, 28 (2009), 2220–2230 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/emboj.2009.179'>10.1038/emboj.2009.179</ext-link>

[82] M. L. Truitt, D. Ruggero, “New frontiers in translational control of the cancer genome”, Nat. Rev. Cancer, 16 (2016), 288–304 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nrc.2016.27'>10.1038/nrc.2016.27</ext-link>

[83] P. Beznosková, L. Bidou, O. Namy, Valášek L.S., “Increased expression of tryptophan and tyrosine tRNAs elevates stop codon readthrough of reporter systems in human cell lines”, Nucleic Acids Res, 49:9 (2021), 5202–5215 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkab315'>10.1093/nar/gkab315</ext-link>

[84] J. M. Goodenbour, T. Pan, “Diversity of tRNA genes in eukaryotes”, Nucleic Acids Res, 34 (2006), 6137–6146 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkl725'>10.1093/nar/gkl725</ext-link>

[85] S. Mahlab, T. Tuller, M. Linial, “Conservation of the relative tRNA composition in healthy and cancerous tissues”, RNA, 18 (2012), 640–652 <ext-link ext-link-type='doi' href='https://doi.org/10.1261/rna.030775.111'>10.1261/rna.030775.111</ext-link>

[86] M. Pavon-Eternod, S. Gomes, R. Geslain, Q. Dai, M. R. Rosner, T. Pan, “tRNA over-expression in breast cancer and functional consequences”, Nucleic Acids Res, 37 (2009), 7268–7280 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkp787'>10.1093/nar/gkp787</ext-link>

[87] H. Gingold, D. Tehler, N. R. Christoffersen, M. M. Nielsen, F. Asmar, S. M. Kooistra, N. S. Christophersen, L. L. Christensen, M. Borre, K. D. Sorensen et al, “A dual program for translation regulation in cellular proliferation and differentiation”, Cell, 158 (2014), 1281–1292 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cell.2014.08.011'>10.1016/j.cell.2014.08.011</ext-link>

[88] H. Goodarzi, H. C.B. Nguyen, S. Zhang, B. D. Dill, H. Molina, S. F. Tavazoie, “Modulated expression of specific tRNAs drives gene expression and cancer progression”, Cell, 165 (2016), 1416–1427 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cell.2016.05.046'>10.1016/j.cell.2016.05.046</ext-link>

[89] R. J. Jackson, C. U. Hellen, T. V. Pestova, “Termination and post-termination events in eukaryotic translation”, Adv. Protein Chem. Struct. Biol, 86 (2012), 45–93 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/B978-0-12-386497-0.00002-5'>10.1016/B978-0-12-386497-0.00002-5</ext-link>

[90] L. S. Valasek, J. Zeman, S. Wagner, P. Beznoskova, Z. Pavlikova, M. P. Mohammad, V. Hronova, A. Herrmannova, Y. Hashem, S. Gunisova, “Embraced by eIF3: structural and functional insights into the roles of eIF3 across the translation cycle”, Nucleic Acids Res, 45 (2017), 10948–10968 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkx805'>10.1093/nar/gkx805</ext-link>

[91] M. Dabrowski, Z. Bukowy-Bieryllo, E. Zietkiewicz, “Translational readthrough potential of natural termination codons in eucaryotes-The impact of RNA sequence”, RNA Biol, 12 (2015), 950–958 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/15476286.2015.1068497'>10.1080/15476286.2015.1068497</ext-link>

[92] F. Schueren, S. Thoms, “Functional translational readthrough: a systems biology perspective”, PLoS Genet, 12 (2016), e1006196 <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.pgen.1006196'>10.1371/journal.pgen.1006196</ext-link>

[93] F. Schueren, T. Lingner, R. George, J. Hofhuis, C. Dickel, J. Gartner, S. Thoms, “Peroxisomal lactate dehydrogenase is generated by translational readthrough in mammals”, Elife, 3 (2014), e03640 <ext-link ext-link-type='doi' href='https://doi.org/10.7554/eLife.03640'>10.7554/eLife.03640</ext-link>

[94] G. Loughran, M. Y. Chou, I. P. Ivanov, I. Jungreis, M. Kellis, A. M. Kiran, P. V. Baranov, J. F. Atkins, “Evidence of efficient stop codon readthrough in four mammalian genes”, Nucleic Acids Res, 42 (2014), 8928–8938 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gku608'>10.1093/nar/gku608</ext-link>

[95] I. Avcilar-Kucukgoze, A. Kashina, “Hijacking tRNAs from Translation: Regulatory Functions of tRNAs in Mammalian Cell Physiology”, Front. Mol. Biosci, 7 (2020), 610617 <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fmolb.2020.610617'>10.3389/fmolb.2020.610617</ext-link>

[96] A. G. Torres, “Enjoy the Silence: Nearly Half of Human tRNA Genes Are Silent”, Bioinformatics Biol. Insights, 13 (2019) <ext-link ext-link-type='doi' href='https://doi.org/10.1177/1177932219868454'>10.1177/1177932219868454</ext-link>

[97] A. Soma, A. Onodera, J. Sugahara, A. Kanai, N. Yachie, M. Tomita, F. Kawamura, Y. Sekine, “Permuted tRNA Genes Expressed via a Circular RNA Intermediate in Cyanidioschyzon Merolae”, Science, 318:5849 (2007), 450–453 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.1145718'>10.1126/science.1145718</ext-link>

[98] Randau L., Münch R., Hohn M. J., Jahn D., Söll D., “Nanoarchaeum Equitans Creates Functional tRNAs from Separate Genes for Their 5'- and 3'-halves”, Nature, 433 (2005), 537–541 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nature03233'>10.1038/nature03233</ext-link>

[99] K. Fujishima, J. Sugahara, K. Kikuta, R. Hirano, A. Sato, M. Tomita, A. Kanai, “Tri-split tRNA Is a Transfer RNA Made from 3 Transcripts that Provides Insight into the Evolution of Fragmented tRNAs in Archaea”, PNAS, 106:8 (2009), 2683–2687 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.0808246106'>10.1073/pnas.0808246106</ext-link>

[100] J. Cheng, P. Kapranov, J. Drenkow, S. Dike, S. Brubaker, S. Patel, J. Long, D. Stern, H. Tammana, G. Helt et al, “Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution”, Science, 308 (2005), 1149–1154 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.1108625'>10.1126/science.1108625</ext-link>

[101] J. S. Mattick, Makunin I. V., “Non-coding RNA”, Hum. Mol. Genet., 15 (2006), R17-R29 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/hmg/ddl046'>10.1093/hmg/ddl046</ext-link>

[102] A. Huttenhofer, P. Schattner, N. Polacek, Noncoding RNAs: hope or hype?, Trends Genet, 21 (2005), 289–297 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.tig.2005.03.007'>10.1016/j.tig.2005.03.007</ext-link>

[103] G. Storz, S. Altuvia, K. M. Wassarman, “An abundance of RNA regulators”, Annu. Rev. Biochem, 74 (2005), 199–217 <ext-link ext-link-type='doi' href='https://doi.org/10.1146/annurev.biochem.74.082803.133136'>10.1146/annurev.biochem.74.082803.133136</ext-link>

[104] A. G. Matera, Z. Wang, “A day in the life of the spliceosome”, Nat. Rev. Mol. Cell Biol, 15:2 (2014), 108–121 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nrm3742'>10.1038/nrm3742</ext-link>

[105] M. Szymanski, M. Z. Barciszewska, M. Zywicki, J. Barciszewski, “Noncoding RNA transcripts”, J. Appl. Genet, 44 (2003), 1–19

[106] A. G. Matera, R. M. Terns, M. P. Terns, “Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs”, Nat. Rev. Mol. Cell Biol, 8:3 (2007), 209–220 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nrm2124'>10.1038/nrm2124</ext-link>

[107] M. T. Bohnsack, K. E. Sloan, “Modifications in small nuclear RNAs and their roles in spliceosome assembly and function”, Biological Chemistr, 399:11 (2018), 1265–1276 <ext-link ext-link-type='doi' href='https://doi.org/10.1515/hsz-2018--0205'>10.1515/hsz-2018--0205</ext-link>

[108] C. L. Will, Lührmann R., “Spliceosome structure and function”, Cold Spring Harb. Perspect. Biol, 3 (2011) <ext-link ext-link-type='doi' href='https://doi.org/10.1101/cshperspect.a003707'>10.1101/cshperspect.a003707</ext-link>

[109] A. A. Hoskins, M. J. Moore, “The spliceosome: a flexible, reversible macromolecular machine”, Trends Biochem. Sci, 37 (2012), 179–188 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.tibs.2012.02.009'>10.1016/j.tibs.2012.02.009</ext-link>

[110] J. Karijolich, Y. T. Yu, “Spliceosomal snRNA modifications and their function”, RNA Biol, 7 (2010), 192–204 <ext-link ext-link-type='doi' href='https://doi.org/10.4161/rna.7.2.11207'>10.4161/rna.7.2.11207</ext-link>

[111] P. Morais, H. Adachi, Y. T. Yu, “Spliceosomal snRNA Epitranscriptomics”, Front Genet, 12 (2021), 652129 <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fgene.2021.652129'>10.3389/fgene.2021.652129</ext-link>

[112] C. A. Stein, D. Castanotto, “FDA-approved oligonucleotide therapies in 2017”, Mol. Ther, 25 (2017), 1069–1075 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.ymthe.2017.03.023'>10.1016/j.ymthe.2017.03.023</ext-link>

[113] Rüger J, Ioannou S., Castanotto D., Stein C. A., “Oligonucleotides to the (gene) rescue: FDA approvals 2017–2019”, Trends Pharmacol. Sci, 41 (2020), 27–41 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.tips.2019.10.009'>10.1016/j.tips.2019.10.009</ext-link>

[114] G. L. Eliceiri, “Small nucleolar RNAs”, Cell. Mol. Life Sci, 56 (1999), 22–31 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s000180050003'>10.1007/s000180050003</ext-link>

[115] A. G. Matera, R. M. Terns, M. P. Terns, “Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs”, Nat. Rev. Mol. Cell Biol, 8 (2007), 209–220 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nrm2124'>10.1038/nrm2124</ext-link>

[116] Boivin V., Faucher-Giguère L., Scott M., Abou-Elela S., “The cellular landscape of mid-size noncoding RNA”, Wiley Interdiscip Rev RNA, 10 (2019), e1530 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/wrna.1530'>10.1002/wrna.1530</ext-link>

[117] Bergeron D., Fafard-Couture È., Scott M. S., “Small nucleolar RNAs: continuing identification of novel members and increasing diversity of their molecular mechanisms of action”, Biochem. Soc. Trans., 48 (2020), 645–656 <ext-link ext-link-type='doi' href='https://doi.org/10.1042/BST20191046'>10.1042/BST20191046</ext-link>

[118] Kiss T., “Small nucleolar RNA-guided post-transcriptional modification of cellular RNAs”, EMBO J., 20 (2001), 3617–3622 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/emboj/20.14.3617'>10.1093/emboj/20.14.3617</ext-link>

[119] D. Bergeron, C. Laforest, S. Carpentier, CalvÈ. A., Fafard-Couture È., Deschamps-Francoeur G., Scott M. S., “SnoRNA copy regulation affects family size, genomic location and family abundance levels”, BMC Genomics, 22 (2021), 414 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/s12864--021--07757--1'>10.1186/s12864--021--07757--1</ext-link>

[120] Deschamps-Francoeur G., Garneau D., Dupuis-Sandoval F., Roy A., Frappier M., Catala M., Couture S., Barbe-Marcoux M., Abou-Elela S., Scott M. S., “Identification of discrete classes of small nucleolar RNA featuring different ends and RNA binding protein dependency”, Nucleic Acids Res, 42 (2014), 10073–10085 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gku664'>10.1093/nar/gku664</ext-link>

[121] Marmier-Gourrier N., ClÈry A., Senty-SÈgault V., Charpentier B., Schlotter F., Leclerc F., Fournier R., Branlant C., “A structural, phylogenetic, and functional study of 15.5-kD/Snu13 protein binding on U3 small nucleolar RNA”, RNA, 9 (2003), 821–838 <ext-link ext-link-type='doi' href='https://doi.org/10.1261/rna.2130503'>10.1261/rna.2130503</ext-link>

[122] L. Lestrade, Weber M. J., “snoRNA-LBME-db, a comprehensive database of human H/ACA and C/D box snoRNAs”, Nucleic Acids Res., 34 (2006), D158 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkj002'>10.1093/nar/gkj002</ext-link>

[123] P. Ganot, M. Caizergues-Ferrer, T. Kiss, “The family of box ACA small nucleolar RNAs is defined by an evolutionarily conserved secondary structure and ubiquitous sequence elements essential for RNA accumulation”, Genes Dev, 11 (1997), 941–956 <ext-link ext-link-type='doi' href='https://doi.org/10.1101/gad.11.7.941'>10.1101/gad.11.7.941</ext-link>

[124] P. Ganot, M. L. Bortolin, T. Kiss, “Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs”, Cell, 89 (1997), 799–809 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0092--8674(00)80263--9'>10.1016/S0092--8674(00)80263--9</ext-link>

[125] J. W. Brown, D. F. Marshall, M. Echeverria, “Intronic noncoding RNAs and splicing”, Trends Plant Sci, 13 (2008), 335–342 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.tplants.2008.04.010'>10.1016/j.tplants.2008.04.010</ext-link>

[126] G. Chanfreau, P. Legrain, A. Jacquier, “Yeast RNase III as a key processing enzyme in small nucleolar RNAs metabolism”, J. Mol. Biol, 284 (1998), 975–988 <ext-link ext-link-type='doi' href='https://doi.org/10.1006/jmbi.1998.2237'>10.1006/jmbi.1998.2237</ext-link>

[127] E. Petfalski, T. Dandekar, Y. Henry, D. Tollervey, “Processing of the precursors to small nucleolar RNAs and rRNAs requires common components”, Mol. Cell. Biol, 18 (1998), 1181–1189 <ext-link ext-link-type='doi' href='https://doi.org/10.1128/MCB.18.3.1181'>10.1128/MCB.18.3.1181</ext-link>

[128] L. H. Qu, A. Henras, Y. J. Lu, H. Zhou, W. X. Zhou, Y. Q. Zhu, J. Zhao, Y. Henry, M. Caizergues-Ferrer, J. P. Bachellerie, “Seven novel methylation guide small nucleolar RNAs are processed from a common polycistronic transcript by Rat1p and RNase III in yeast”, Mol. Cell. Biol, 19 (1999), 1144–1158 <ext-link ext-link-type='doi' href='https://doi.org/10.1128/MCB.19.2.1144'>10.1128/MCB.19.2.1144</ext-link>

[129] F. Dupuis-Sandoval, M. Poirier, M. S. Scott, “The emerging landscape of small nucleolar RNAs in cell biology”, Wiley Interdiscip. Rev. RNA, 6 (2015), 381–397 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/wrna.1284'>10.1002/wrna.1284</ext-link>

[130] Bratkovič T., Bozič J., Rogelj B., “Functional diversity of small nucleolar RNAs”, Nucleic Acids Res, 48 (2020), 1627–1651 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkz1140'>10.1093/nar/gkz1140</ext-link>

[131] M. Falaleeva, J. R. Welden, M. J. Duncan, S. Stamm, “C/D-box snoRNAs form methylating and non-methylating ribonucleoprotein complexes: old dogs show new tricks”, BioEssays, 39 (2017) <ext-link ext-link-type='doi' href='https://doi.org/10.1002/bies.201600264'>10.1002/bies.201600264</ext-link>

[132] S. A. Shabalina, E. V. Koonin, “Origins and evolution of eukaryotic RNA interference”, Trends Ecol. Evol. (Amst.), 23:10 (2008), 578–587 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.tree.2008.06.005'>10.1016/j.tree.2008.06.005</ext-link>

[133] R. C. Wilson, J. A. Doudna, “Molecular mechanisms of RNA interference”, Annu. Rev. Biophys, 42 (2013), 217–239 <ext-link ext-link-type='doi' href='https://doi.org/10.1146/annurev-biophys-083012--130404'>10.1146/annurev-biophys-083012--130404</ext-link>

[134] M. R. Fabian, N. Sonenberg, “The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC”, Nature Structural & Molecular Biology, 19:6 (2012), 586–593 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nsmb.2296'>10.1038/nsmb.2296</ext-link>

[135] R. W. Carthew, E. J. Sontheimer, “Origins and Mechanisms of miRNAs and siRNAs”, Cell, 136:4 (2009), 642–655 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cell.2009.01.035'>10.1016/j.cell.2009.01.035</ext-link>

[136] M. Lu, Q. Zhang, M. Deng, J. Miao, Y. Guo, W. Gao, Q. Cui, “An analysis of human microRNA and disease associations”, PLoS ONE, 3:10 (2008) <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2383256'>2383256</ext-link>

[137] P. Kubowicz, D. Zelaszczyk, E. Pekala, “RNAi in clinical studies”, Curr. Med. Chem, 20 (2013), 1801–1816 <ext-link ext-link-type='doi' href='https://doi.org/10.2174/09298673113209990118'>10.2174/09298673113209990118</ext-link>

[138] T. Martinez, N. Wright, M. López-Fraga, JimÈnez A. I., Pañeda C., “Silencing human genetic diseases with oligonucleotide-based therapies”, Hum. Genet, 132 (2013), 481–493 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s00439-013-1288-1'>10.1007/s00439-013-1288-1</ext-link>

[139] P. V. Ramachandran, S. Ignacimuthu, “RNA interference-a silent but an efficient therapeutic tool”, Appl. Biochem. Biotechnol, 169 (2013), 1774–1789 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s12010-013-0098-1'>10.1007/s12010-013-0098-1</ext-link>

[140] B. L. Davidson, P. B. McCray, “Current prospects for RNA interference-based therapies”, Nat. Rev. Genet, 12 (2011), 329–340 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nrg2968'>10.1038/nrg2968</ext-link>

[141] R. L. Setten, J. J. Rossi, S. Han, “The current state and future directions of RNAi-based therapeutics”, Nature Reviews Drug Discovery, 18:6 (2019), 421–446 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41573--019--0017--4'>10.1038/s41573--019--0017--4</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3996438'>3996438</ext-link>

[142] R. W. Carthew, E. J. Sontheimer, “Origins and Mechanisms of miRNAs and siRNAs”, Cell, 136:4 (2009), 642–655 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cell.2009.01.035'>10.1016/j.cell.2009.01.035</ext-link>

[143] H. K. Saini, S. Griffiths-Jones, A. J. Enright, “Genomic analysis of human microRNA transcripts”, PNAS, 104:45 (2007), 17719–17724 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.0703890104'>10.1073/pnas.0703890104</ext-link>

[144] J. Han, Y. Lee, K. H. Yeom, J. W. Nam, I. Heo, J. K. Rhee, S. Y. Sohn, Y. Cho, B. T. Zhang, V. N. Kim, “Molecular Basis for the Recognition of Primary microRNAs by the Drosha-DGCR8 Complex”, Cell, 125:5 (2006), 887–901 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cell.2006.03.043'>10.1016/j.cell.2006.03.043</ext-link>

[145] E. Lund, J. E. Dahlberg, “Substrate selectivity of exportin 5 and Dicer in the biogenesis of microRNAs”, Cold Spring Harb. Symp. Quant. Biol, 71 (2006), 59–66 <ext-link ext-link-type='doi' href='https://doi.org/10.1101/sqb.2006.71.050'>10.1101/sqb.2006.71.050</ext-link>

[146] D. S. Schwarz, G. Hutvágner, T. Du, Z. Xu, N. Aronin, P. D. Zamore, “Asymmetry in the assembly of the RNAi enzyme complex”, Cell, 115:2 (2003), 199–208 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0092-8674(03)00759-1'>10.1016/S0092-8674(03)00759-1</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=849711'>849711</ext-link>

[147] I. J. MacRae, E. Ma, M. Zhou, C. V. Robinson, J. A. Doudna, “In vitro reconstitution of the human RISC-loading complex”, PNAS, 105:2 (2008), 512–517 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.0710869105'>10.1073/pnas.0710869105</ext-link>

[148] A. Eulalio, E. Huntzinger, E. Izaurralde, “GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay”, Nature Structural & Molecular Biology, 15:4 (2008), 346–353 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nsmb.1405'>10.1038/nsmb.1405</ext-link>

[149] A. S. Flynt, E. C. Lai, “Biological principles of microRNA-mediated regulation: shared themes amid diversity”, Nat. Rev. Genet, 9 (2008), 831–842 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nrg2455'>10.1038/nrg2455</ext-link>

[150] M. J. Axtell, J. O. Westholm, E. C. Lai, “Vive la diffÈrence: biogenesis and evolution of microRNAs in plants and animals”, Genome Biol, 12 (2011), 221 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/gb-2011-12-4-221'>10.1186/gb-2011-12-4-221</ext-link>

[151] J. O. Westholm, E. C. Lai, “Mirtrons: microRNA biogenesis via splicing”, Biochimie, 93 (2011), 1897–1904 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.biochi.2011.06.017'>10.1016/j.biochi.2011.06.017</ext-link>

[152] B. Czech, G. J. Hannon, “Small RNA sorting: matchmaking for Argonautes”, Nat. Rev. Genet, 12 (2010), 19–31 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nrg2916'>10.1038/nrg2916</ext-link>

[153] V. Ambros, B. Bartel, D. P. Bartel, C. B. Burge, J. C. Carrington, X. Chen, G. Dreyfuss, S. R. Eddy, S. Griffiths-Jones, M. Marshall et al, “A uniform system for microRNA annotation”, RNA, 9 (2003), 277–279 <ext-link ext-link-type='doi' href='https://doi.org/10.1261/rna.2183803'>10.1261/rna.2183803</ext-link>

[154] J. S. Yang, E. C. Lai, “Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants”, Mol. Cell, 43 (2011), 892–903 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.molcel.2011.07.024'>10.1016/j.molcel.2011.07.024</ext-link>

[155] K. Okamura, J. W. Hagen, H. Duan, D. M. Tyler, E. C. Lai, “The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila”, Cell, 130 (2007), 89–100 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cell.2007.06.028'>10.1016/j.cell.2007.06.028</ext-link>

[156] J. G. Ruby, C. H. Jan, D. P. Bartel, “Intronic microRNA precursors that bypass Drosha processing”, Nature, 448 (2007), 83–86 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nature05983'>10.1038/nature05983</ext-link>

[157] A. S. Flynt, W. J. Chung, J. C. Greimann, C. D. Lima, E. C. Lai, “microRNA biogenesis via splicing and exosome-mediated trimming in Drosophila”, Mol. Cell, 38 (2010), 900–907 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.molcel.2010.06.014'>10.1016/j.molcel.2010.06.014</ext-link>

[158] E. Ladewig, K. Okamura, A. S. Flynt, J. O. Westholm, E. C. Lai, “Discovery of hundreds of mirtrons in mouse and human small RNA data”, Genome Res, 22:9 (2012), 1634–1645 <ext-link ext-link-type='doi' href='https://doi.org/10.1101/gr.133553.111'>10.1101/gr.133553.111</ext-link>

[159] J. Wen, E. Ladewig, S. Shenker, J. Mohammed, E. C. Lai, “Analysis of Nearly One Thousand Mammalian Mirtrons Reveals Novel Features of Dicer Substrates”, PLoS Comput. Biol, 11:9 (2015) <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.pcbi.1004441'>10.1371/journal.pcbi.1004441</ext-link>

[160] J. O. Westholm, E. Ladewig, K. Okamura, N. Robine, E. C. Lai, “Common and distinct patterns of terminal modifications to mirtrons and canonical microRNAs”, RNA, 18 (2012), 177–192 <ext-link ext-link-type='doi' href='https://doi.org/10.1261/rna.030627.111'>10.1261/rna.030627.111</ext-link>

[161] E. C. Lai, “microRNAs: Runts of the genome assert themselves”, Curr. Biol., 13 (2003), R925-R936 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cub.2003.11.017'>10.1016/j.cub.2003.11.017</ext-link>

[162] J. G. Doench, P. A. Sharp, “Specificity of microRNA target selection in translational repression”, Genes Dev, 18:5 (2004), 504–511 <ext-link ext-link-type='doi' href='https://doi.org/10.1101/gad.1184404'>10.1101/gad.1184404</ext-link>

[163] J. Brennecke, A. Stark, R. B. Russell, S. M. Cohen, “Principles of microRNA-target recognition”, PLoS Biol, 3:3 (2005) <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.pbio.0030085'>10.1371/journal.pbio.0030085</ext-link>

[164] B. P. Lewis, C. B. Burge, D. P. Bartel, “Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets”, Cell, 120:1 (2005), 15–20 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cell.2004.12.035'>10.1016/j.cell.2004.12.035</ext-link>

[165] D. P. Bartel, “MicroRNAs: target recognition and regulatory functions”, Cell, 136:2 (2009), 215–233 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cell.2009.01.002'>10.1016/j.cell.2009.01.002</ext-link>

[166] Krek A., Grün D., Poy M. N., Wolf R., Rosenberg L., Epstein E. J., MacMenamin P., da Piedade I., Gunsalus K. C., Stoffel M., Rajewsky N., “Combinatorial microRNA target predictions”, Nat. Genet, 37:5 (2005), 495–500 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/ng1536'>10.1038/ng1536</ext-link>

[167] R. C. Friedman, K. K. Farh, C. B. Burge, D. P. Bartel, “Most mammalian mRNAs are conserved targets of microRNAs”, Genome Res, 19:1 (2009), 92–105 <ext-link ext-link-type='doi' href='https://doi.org/10.1101/gr.082701.108'>10.1101/gr.082701.108</ext-link>

[168] A. Simkin, R. Geissler, A. B.R. McIntyre, A. Grimson, “Evolutionary dynamics of microRNA target sites across vertebrate evolution”, PLoS Genet, 16:2 (2020) <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.pgen.1008285'>10.1371/journal.pgen.1008285</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1506.94082'>1506.94082</ext-link>

[169] P. D. Zamore, T. Tuschl, P. A. Sharp, D. P. Bartel, “RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals”, Cell, 101 (2000), 25–33 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0092-8674(00)80620-0'>10.1016/S0092-8674(00)80620-0</ext-link>

[170] S. M. Elbashir, W. Lendeckel, T. Tuschl, “RNA interference is mediated 1- and 22-nucleotide RNAs”, Genes Dev, 15 (2001), 188–200 <ext-link ext-link-type='doi' href='https://doi.org/10.1101/gad.862301'>10.1101/gad.862301</ext-link>

[171] T. Sijen, R. H. Plasterk, “Transposon silencing in the Caenorhabditis elegans germline by natural RNAi”, Nature, 426 (2003), 310–314 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nature02107'>10.1038/nature02107</ext-link>

[172] H. Shi, A. Djikeng, C. Tschudi, E. Ullu, “Argonaute protein in the early divergent eukaryote Trypanosoma brucei: Control of small interfering RNA accumulation and retroposon transcript abundance”, Mol. Cell. Biol, 24 (2004), 420–427 <ext-link ext-link-type='doi' href='https://doi.org/10.1128/MCB.24.1.420-427.2004'>10.1128/MCB.24.1.420-427.2004</ext-link>

[173] Z. Lippman, R. Martienssen, “The role of RNA interference in heterochromatic silencing”, Nature, 431 (2004), 364–370 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nature02875'>10.1038/nature02875</ext-link>

[174] A. Peragine, M. Yoshikawa, G. Wu, H. L. Albrecht, R. S. Poethig, “SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis”, Genes & Dev, 18 (2004), 2368–2379 <ext-link ext-link-type='doi' href='https://doi.org/10.1101/gad.1231804'>10.1101/gad.1231804</ext-link>

[175] O. Borsani, J. Zhu, P. E. Verslues, R. Sunkar, J. K. Zhu, “Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis”, Cell, 123 (2005), 1279–1291 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cell.2005.11.035'>10.1016/j.cell.2005.11.035</ext-link>

[176] V. Ambros, R. C. Lee, A. Lavanway, P. T. Williams, D. Jewell, “MicroRNAs and other tiny endogenous RNAs in C”, elegans. Curr. Biol, 13 (2003), 807–818 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0960-9822(03)00287-2'>10.1016/S0960-9822(03)00287-2</ext-link>

[177] P. Y. Chen, H. Manninga, K. Slanchev, M. Chien, J. J. Russo, J. Ju, R. Sheridan, B. John, D. S. Marks, D. Gaidatzis et al, “The developmental miRNA profiles of zebrafish as determined by small RNA cloning”, Genes & Dev, 19 (2005), 1288–1293 <ext-link ext-link-type='doi' href='https://doi.org/10.1101/gad.1310605'>10.1101/gad.1310605</ext-link>

[178] A. A. Aravin, “The small RNA profile during Drosophila melanogaster development”, Dev. Cell, 5 (2003), 337–350 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/s1534--5807(03)00228--4'>10.1016/s1534--5807(03)00228--4</ext-link>

[179] D. Moldovan, A. Spriggs, E. S. Dennis, I. W. Wilson, “The hunt for hypoxia responsive natural antisense short interfering RNAs”, Plant Signaling & Behavior, 5 (2010), 247–251 <ext-link ext-link-type='doi' href='https://doi.org/10.4161/psb.5.3.10548'>10.4161/psb.5.3.10548</ext-link>

[180] S. Katiyar-Agarwal, R. Morgan, D. Dahlbeck, O. Borsani, A. Villegas, J. K. Zhu, B. J. Staskawicz, H. Jin, “A pathogen-inducible endogenous siRNA in plant immunity”, PNAS, 103:47 (2006), 18002–18007 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.0608258103'>10.1073/pnas.0608258103</ext-link>

[181] M. A. Held, B. Penning, A. S. Brandt, S. A. Kessans, W. Yong, S. R. Scofield, N. C. Carpita, “Small-interfering RNAs from natural antisense transcripts derived from a cellulose synthase gene modulate cell wall biosynthesis in barley”, PNAS, 105:51 (2008), 20534–20539 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.0809408105'>10.1073/pnas.0809408105</ext-link>

[182] X. Zhang, J. Xia, Y. E. Lii, B. E. Barrera-Figueroa, X. Zhou, S. Gao, L. Lu, D. Niu, Z. Chen, C. Leung et al, “Genome-wide analysis of plant nat-siRNAs reveals insights into their distribution, biogenesis and function”, Genome Biology, 13:20 (2012), R20 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/gb-2012--13--3-r20'>10.1186/gb-2012--13--3-r20</ext-link>

[183] T. Watanabe, A. Takeda, T. Tsukiyama, K. Mise, T. Okuno, H. Sasaki, N. Minami, H. Imai, “Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes”, Genes Dev, 20:13 (2006), 1732–1743 <ext-link ext-link-type='doi' href='https://doi.org/10.1101/gad.1425706'>10.1101/gad.1425706</ext-link>

[184] A. Aravin, D. Gaidatzis, S. Pfeffer, M. Lagos-Quintana, P. Landgraf, N. Iovino, P. Morris, M. J. Brownstein, Kuramochi-Miyagawa S., Nakano T. et al., “A novel class of small RNAs bind to MILI protein in mouse testes”, Nature, 442 (2006), 203–207 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nature04916'>10.1038/nature04916</ext-link>

[185] A. Girard, R. Sachidanandam, G. J. Hannon, M. A. Carmell, “A germline-specific class of small RNAs binds mammalian Piwi proteins”, Nature, 442:7099 (2006), 199–202 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nature04917'>10.1038/nature04917</ext-link>

[186] N. C. Lau, A. G. Seto, J. Kim, Kuramochi-Miyagawa S., Nakano T., Bartel D. P., Kingston R. E., “Characterization of the piRNA Complex from Rat Testes”, Science, 313 (2006), 363–367 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.1130164'>10.1126/science.1130164</ext-link>

[187] S. T. Grivna, E. Beyret, Z. Wang, H. Lin, “A novel class of small RNAs in mouse spermatogenic cells”, Genes Dev, 20 (2006), 1709–1714 <ext-link ext-link-type='doi' href='https://doi.org/10.1101/gad.1434406'>10.1101/gad.1434406</ext-link>

[188] C. D. Malone, G. J. Hannon, “Small RNAs as guardians of the genome”, Cell, 136:4 (2009), 656–668 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cell.2009.01.045'>10.1016/j.cell.2009.01.045</ext-link>

[189] H. Ishizu, H. Siomi, M. C. Siomi, “Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines”, Genes Dev, 26:21 (2012), 2361–2373 <ext-link ext-link-type='doi' href='https://doi.org/10.1101/gad.203786.112'>10.1101/gad.203786.112</ext-link>

[190] L. T. Gou, P. Dai, J. H. Yang, Y. Xue, Y. P. Hu, Y. Zhou, J. Y. Kang, X. Wang, H. Li, M. M. Hua et al, “Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis”, Cell Res, 24 (2014), 680–700 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/cr.2014.41'>10.1038/cr.2014.41</ext-link>

[191] P. Zhang, J. Y. Kang, L. T. Gou, J. Wang, Y. Xue, G. Skogerboe, P. Dai, D. W. Huang, R. Chen, X. D. Fu et al, “MIWI and piRNAmediated cleavage of messenger RNAs in mouse testes”, Cell Res, 25 (2015), 193–207 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/cr.2015.4'>10.1038/cr.2015.4</ext-link>

[192] W. S.S. Goh, I. Falciatori, O. H. Tam, R. Burgess, O. Meikar, N. Kotaja, M. Hammell, G. J. Hannon, “piRNA-directed cleavage of meiotic transcripts regulates spermatogenesis”, Genes Dev, 29 (2015), 1032–1044 <ext-link ext-link-type='doi' href='https://doi.org/10.1101/gad.260455.115'>10.1101/gad.260455.115</ext-link>

[193] T. Watanabe, E. Cheng, M. Zhong, H. Lin, “Retrotransposons and pseudogenes regulate mRNAs and lncRNAs via the piRNA pathway in the germline”, Genome Res, 25 (2015), 368–380 <ext-link ext-link-type='doi' href='https://doi.org/10.1101/gr.180802.114'>10.1101/gr.180802.114</ext-link>

[194] A. Vourekas, P. Alexiou, N. Vrettos, M. Maragkakis, Z. Mourelatos, “Sequence-dependent but not sequence-specific piRNA adhesion traps mRNAs to the germ plasm”, Nature, 531 (2016), 390–394 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nature17150'>10.1038/nature17150</ext-link>

[195] E. Z. Shen, H. Chen, A. R. Ozturk, S. Tu, M. Shirayama, W. Tang, Y. H. Ding, S. Y. Dai, Z. Weng, C. C. Mello, “Identification of piRNA binding sites reveals the Argonaute regulatory landscape of the C”, elegans germline. Cell, 172 (2018), e18, 937–951 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cell.2018.02.002'>10.1016/j.cell.2018.02.002</ext-link>

[196] D. Zhang, S. Tu, M. Stubna, W. S. Wu, W. C. Huang, Z. Weng, H. C. Lee, “The piRNA targeting rules and the resistance to piRNA silencing in endogenous genes”, Science, 359 (2018), 587–592 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.aao2840'>10.1126/science.aao2840</ext-link>

[197] P. Dai, X. Wang, L. T. Gou, Z. T. Li, Z. Wen, Z. G. Chen, M. M. Hua, A. Zhong, L. Wang, H. Su, H. Wan, K. Qian, L. Liao, J. Li, B. Tian, D. Li, X. D. Fu, H. J. Shi, Y. Zhou, M. F. Liu, “A Translation-Activating Function of MIWI/piRNA during Mouse Spermiogenesis”, Cell, 179:7 (2019), E16, 1566–1581 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cell.2019.11.022'>10.1016/j.cell.2019.11.022</ext-link>

[198] P. Dai, X. Wang, MF. Liu, “A dual role of the PIWI/piRNA machinery in regulating mRNAs during mouse spermiogenesis”, Sci. China Life Sci, 63 (2020), 447–449 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s11427--020--1632--5'>10.1007/s11427--020--1632--5</ext-link>

[199] J. Brennecke, A. A. Aravin, A. Stark, M. Dus, M. Kellis, R. Sachidanandam, G. J. Hannon, “Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila”, Cell, 128 (2007), 1089–1103 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cell.2007.01.043'>10.1016/j.cell.2007.01.043</ext-link>

[200] D. M. Ozata, I. Gainetdinov, A. Zoch, D. O'Carroll, P. D. Zamore, “PIWI-interacting RNAs: small RNAs with big functions”, Nat. Rev. Genet, 20 (2019), 89–108 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41576--018--0073--3'>10.1038/s41576--018--0073--3</ext-link>

[201] A. G. Seto, R. E. Kingston, N. C. Lau, “The Coming of Age for Piwi Proteins”, Molecular Cell, 26:5 (2007), 603–609 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.molcel.2007.05.021'>10.1016/j.molcel.2007.05.021</ext-link>

[202] C. Jochl, M. Rederstorff, J. Hertel, P. F. Stadler, I. L. Hofacker, M. Schrettl, H. Haas, A. Huttenhofer, “Small ncRNA transcriptome analysis from Aspergillus fumigatus suggests a novel mechanism for regulation of protein synthesis”, Nucleic Acids Res, 36 (2008), 2677–2689 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkn123'>10.1093/nar/gkn123</ext-link>

[203] Y. Li, Y. Zhang, M. Liu, “Knockout Gene-Based Evidence for PIWI-Interacting RNA Pathway in Mammals”, Front. Cell Dev. Biol, 9 (2021), 681188 <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fcell.2021.681188'>10.3389/fcell.2021.681188</ext-link>

[204] J. F. Su, A. Concilla, D. Z. Zhang, F. Zhao, F. F. Shen, H. Zhang, F. Y. Zhou, “PIWI-interacting RNAs: Mitochondria-based biogenesis and functions in cancer”, Genes Dis, 8:5 (2020), 603–622 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.gendis.2020.09.006'>10.1016/j.gendis.2020.09.006</ext-link>

[205] D. Haussecker, Y. Huang, A. Lau, P. Parameswaran, A. Z. Fire, M. A. Kay, “Human tRNA-derived small RNAs in the global regulation of RNA silencing”, RNA, 16 (2010), 673–695 <ext-link ext-link-type='doi' href='https://doi.org/10.1261/rna.2000810'>10.1261/rna.2000810</ext-link>

[206] P. Ivanov, M. M. Emara, J. Villen, S. P. Gygi, P. Anderson, “Angiogenin-induced tRNA fragments inhibit translation initiation”, Mol. Cell, 43 (2011), 613–623 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.molcel.2011.06.022'>10.1016/j.molcel.2011.06.022</ext-link>

[207] J. Gebetsberger, M. Zywicki, A. Kunzi, N. Polacek, “tRNA-Derived Fragments Target the Ribosome and Function as Regulatory Non-coding RNA in Haloferax Volcanii”, Archaea, 2012 (2012) <ext-link ext-link-type='doi' href='https://doi.org/10.1155/2012/260909'>10.1155/2012/260909</ext-link>

[208] J. Speer, C. W. Gehrke, K. C. Kuo, T. P. Waalkes, E. Borek, “tRNA Breakdown Products as Markers for Cancer”, Cancer, 44:6 (1979), 2120–2123 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/1097--0142(197912)44:6&lt;2120::aid-cncr2820440623&gt;3.0.co;2--6'>10.1002/1097--0142(197912)44:6&lt;2120::aid-cncr2820440623&gt;3.0.co;2--6</ext-link>

[209] V. Balatti, G. Nigita, D. Veneziano, A. Drusco, G. S. Stein, T. L. Messier, N. H. Farina, J. B. Lian, L. Tomasello, C. G. Liu et al, “tsRNA signatures in cancer”, PNAS, 114 (2017), 8071–8076 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.1706908114'>10.1073/pnas.1706908114</ext-link>

[210] N. Guzman, K. Agarwal, D. Asthagiri, L. Yu, M. Saji, M. D. Ringel, M. E. Paulaitis, “Breast cancer-specific miR signature unique to extracellular vesicles includes “microRNA-like” tRNA fragments”, Mol. Cancer Res, 13 (2015), 891–901 <ext-link ext-link-type='doi' href='https://doi.org/10.1158/1541-7786.MCR-14-0533'>10.1158/1541-7786.MCR-14-0533</ext-link>

[211] S. P. Keam, G. Hutvagner, “tRNA-Derived Fragments (tRFs): Emerging New Roles for an Ancient RNA in the Regulation of Gene Expression”, Life (Basel), 5:4 (2015), 1638–1651 <ext-link ext-link-type='doi' href='https://doi.org/10.3390/life5041638'>10.3390/life5041638</ext-link>

[212] H. Goodarzi, X. Liu, H. C. Nguyen, S. Zhang, L. Fish, S. F. Tavazoie, “Endogenous tRNA-derived fragments suppress breast cancer progression via YBX1 displacement”, Cell, 161 (2015), 790–802 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cell.2015.02.053'>10.1016/j.cell.2015.02.053</ext-link>

[213] P. Anderson, P. Ivanov, “tRNA fragments in human health and disease”, FEBS Lett, 588 (2014), 4297–4304 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.febslet.2014.09.001'>10.1016/j.febslet.2014.09.001</ext-link>

[214] P. Kumar, J. Anaya, S. B. Mudunuri, A. Dutta, “Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets”, BMC Biol, 12 (2014), 78 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/s12915-014-0078-0'>10.1186/s12915-014-0078-0</ext-link>

[215] S. Karaiskos, A. Grigoriev, “Dynamics of tRNA fragments and their targets in aging mammalian brain”, F1000Res, 5 (2016), 2758 <ext-link ext-link-type='doi' href='https://doi.org/10.12688/f1000research.10116.1'>10.12688/f1000research.10116.1</ext-link>

[216] F. Jin, Z. Guo, “Emerging role of a novel small non-coding regulatory RNA: tRNA-derived small RNA”, ExRNA, 1 (2019) <ext-link ext-link-type='doi' href='https://doi.org/10.1186/s41544--019--0036--7'>10.1186/s41544--019--0036--7</ext-link>

[217] N. Guzzi, C. Bellodi, “Novel insights into the emerging roles of tRNA-derived fragments in mammalian development”, RNA Biol, 17 (2020), 1214–1222 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/15476286.2020.1732694'>10.1080/15476286.2020.1732694</ext-link>

[218] C. Megel, G. Hummel, S. Lalande, E. Ubrig, V. Cognat, G. Morelle, Salinas-GiegÈ. T., Duchêne A. M., MarÈchal-Drouard L., “Plant RNases T2, but not Dicer-like proteins, are major players of tRNA-derived fragments biogenesis”, Nucleic Acids Res., 47 (2019), 941–952 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gky1156'>10.1093/nar/gky1156</ext-link>

[219] L. L. Zheng, W. L. Xu, S. Liu, W. J. Sun, J. H. Li, J. Wu, J. H. Yang, L. H. Qu, “tRF2Cancer: a web server to detect tRNA-derived small RNA fragments (tRFs) and their expression in multiple cancers”, Nucleic Acids Res., 44 (2016), W185-W193 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkw414'>10.1093/nar/gkw414</ext-link>

[220] M. Yu, B. Lu, J. Zhang, J. Ding, P. Liu, Y. Lu, “tRNA-derived RNA fragments in cancer: current status and future perspectives”, J. Hematol Oncol, 13 (2020), 121 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/s13045--020--00955--6'>10.1186/s13045--020--00955--6</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=829873'>829873</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1474.62048'>1474.62048</ext-link>

[221] D. M. Thompson, C. Lu, P. J. Green, R. Parker, “tRNA cleavage is a conserved response to oxidative stress in eukaryotes”, RNA, 14:10 (2008), 2095–2103 <ext-link ext-link-type='doi' href='https://doi.org/10.1261/rna.1232808'>10.1261/rna.1232808</ext-link>

[222] Y. Shen, X. Yu, L. Zhu, T. Li, Z. Yan, J. Guo, “Transfer RNA-derived fragments and tRNA halves: biogenesis, biological functions and their roles in diseases”, J. Cell Mol. Med, 96 (2018), 1167–76 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s00109-018-1693-y'>10.1007/s00109-018-1693-y</ext-link>

[223] Cho H., Lee W., Kim GW., Lee SH., Moon JS., Kim M., Kim HS., JW. Oh., “Regulation of La/SSB-dependent viral gene expression by pre-tRNA 3' trailer-derived tRNA fragments”, Nucleic Acids Res., 47 (2019), 9888–9901 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkz732'>10.1093/nar/gkz732</ext-link>

[224] P. Ivanov, Emara M.M., J. Villen, Gygi S.P., P. Anderson, “Angiogenin-induced tRNA fragments inhibit translation initiation”, Mol Cell, 43 (2011), 613–623 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.molcel.2011.06.022'>10.1016/j.molcel.2011.06.022</ext-link>

[225] L. Guan, S. Karaiskos, A. Grigoriev, “Inferring targeting modes of Argonaute-loaded tRNA fragments”, RNA Biol, 17 (2020), 1070–1080 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/15476286.2019.1676633'>10.1080/15476286.2019.1676633</ext-link>

[226] C. Kuscu, P. Kumar, M. Kiran, Z. Su, A. Malik, A. Dutta, “tRNA fragments (tRFs) guide Ago to regulate gene expression post-transcriptionally in a Dicer-independent manner”, RNA, 24 (2018), 1093–1105 <ext-link ext-link-type='doi' href='https://doi.org/10.1261/rna.066126.118'>10.1261/rna.066126.118</ext-link>

[227] D. Hasler, G. Lehmann, Y. Murakawa, F. Klironomos, L. Jakob, F. A. Grasser, N. Rajewsky, M. Landthaler, G. Meister, “The lupus autoantigen La prevents mis-channeling of tRNA fragments into the human microRNA pathway”, Mol. Cell, 63 (2016), 110–124 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.molcel.2016.05.026'>10.1016/j.molcel.2016.05.026</ext-link>

[228] A. M. Anger, J. P. Armache, O. Berninghausen, M. Habeck, M. Subklewe, D. N. Wilson, R. Beckmann, “Structures of the human and Drosophila 80S ribosome”, Nature, 497 (2013), 80–85 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nature12104'>10.1038/nature12104</ext-link>

[229] T. B. Hansen, M. T. Veno, T. I. Jensen, A. Schaefer, C. K. Damgaard, J. Kjems, “Argonaute-associated short introns are a novel class of gene regulators”, Nat. Commun, 7 (2016), 11538 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/ncomms11538'>10.1038/ncomms11538</ext-link>

[230] M. I. Tenaillon, J. D. Hollister, B. S. Gaut, “A triptych of the evolution of plant transposable elements”, Trends Plant Sci, 15 (2010), 471–478 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.tplants.2010.05.003'>10.1016/j.tplants.2010.05.003</ext-link>

[231] T. Wicker, F. Sabot, A. Hua-Van, J. L. Bennetzen, P. Capy, B. Chalhoub, A. Flavell, P. Leroy, M. Morgante, O. Panaud et al, “A unified classification system for eukaryotic transposable elements”, Nat. Rev. Genet, 8 (2007), 973–982 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nrg2165'>10.1038/nrg2165</ext-link>

[232] C. Vitte, M. A. Fustier, K. Alix, M. I. Tenaillon, “The bright side of transposons in crop evolution”, Brief. Funct. Genomics, 13 (2017), 276–295 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/bfgp/elu002'>10.1093/bfgp/elu002</ext-link>

[233] M. A. Grandbastien, “Activation of plant retrotransposons under stress conditions”, Trends Plant Sci, 3 (1998), 181–187 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S1360--1385(98)01232--1'>10.1016/S1360--1385(98)01232--1</ext-link>

[234] M. A. Matzke, R. A. Mosher, “RNA-directed DNA methylation: an epigenetic pathway of increasing complexity”, Nat. Rev. Genet, 15 (2014), 394–408 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nrg3683'>10.1038/nrg3683</ext-link>

[235] T. Blevins, R. Podicheti, V. Mishra, M. Marasco, J. Wang, D. Rusch, H. Tang, C. S. Pikaard, “Identification of Pol IV and RDR2-dependent precursors of 24 nt siRNAs guiding de novo DNA methylation in Arabidopsis”, Elife, 4 (2015), e09591 <ext-link ext-link-type='doi' href='https://doi.org/10.7554/eLife.09591'>10.7554/eLife.09591</ext-link>

[236] X. Zhong, J. Du, C. J. Hale, J. Gallego-Bartolome, S. Feng, A. A. Vashisht, J. Chory, J. A. Wohlschlegel, D. J. Patel, S. E. Jacobsen et al, “Molecular mechanism of action of plant DRM de novo DNA methyltransferases”, Cell, 157 (2014), 1050–1060 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cell.2014.03.056'>10.1016/j.cell.2014.03.056</ext-link>

[237] K. M. Creasey, J. Zhai, F. Borges, F. Van Ex, M. Regulski, B. C. Meyers, R. A. Martienssen, “miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis”, Nature, 508 (2014), 411–415 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nature13069'>10.1038/nature13069</ext-link>

[238] T. Watanabe, E. C. Cheng, M. Zhong, H. Lin, “Retrotransposons and pseudogenes regulate mRNAs and lncRNAs via the piRNA pathway in the germline”, Genome Res, 25 (2015), 368–380 <ext-link ext-link-type='doi' href='https://doi.org/10.1101/gr.180802.114'>10.1101/gr.180802.114</ext-link>

[239] D. Wang, Z. Qu, L. Yang, Q. Zhang, Z. H. Liu, T. Do, D. L. Adelson, Z. Y. Wang, I. Searle, J. K. Zhu, “Transposable elements (TEs) contribute to stress-related long intergenic noncoding RNAs in plants”, Plant J., 90 (2017), 133–146 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/tpj.13481'>10.1111/tpj.13481</ext-link>

[240] X. Wang, G. Ai, C. Zhang, L. Cui, J. Wang, H. Li, J. Zhang, Z. Ye, “Expression and diversification analysis reveals transposable elements play important roles in the origin of Lycopersicon-specific lncRNAs in tomato”, New Phytol, 209 (2015), 1442–1455 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/nph.13718'>10.1111/nph.13718</ext-link>

[241] J. Liu, C. Jung, J. Xu, H. Wang, S. Deng, L. Bernad, C. Arenas-Huertero, N. H. Chua, “Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis”, Plant Cell, 24 (2012), 4333–4345 <ext-link ext-link-type='doi' href='https://doi.org/10.1105/tpc.112.102855'>10.1105/tpc.112.102855</ext-link>

[242] X. Cao, G. Yeo, A. R. Muotri, T. Kuwabara, F. H. Gage, “Noncoding RNAs in the mammalian central nervous system”, Annu Rev. Neurosci, 29 (2006), 77–103 <ext-link ext-link-type='doi' href='https://doi.org/10.1146/annurev.neuro.29.051605.112839'>10.1146/annurev.neuro.29.051605.112839</ext-link>

[243] T. R. Mercer, M. E. Dinger, J. S. Mattick, “Long non-coding RNAs: Insights into functions”, Nat. Rev. Genet, 10 (2009), 155–159 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nrg2521'>10.1038/nrg2521</ext-link>

[244] C. P. Ponting, P. L. Oliver, W. Reik, “Evolution and functions of long noncoding RNAs”, Cell, 136 (2009), 629–641 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cell.2009.02.006'>10.1016/j.cell.2009.02.006</ext-link>

[245] D. Managadze, I. B. Rogozin, D. Chernikova, S. A. Shabalina, E. V. Koonin, “Negative correlation between expression level and evolutionary rate of long intergenic noncoding RNAs”, Genome Biol. Evol, 3 (2011), 1390–1404 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/gbe/evr116'>10.1093/gbe/evr116</ext-link>

[246] C. P. Ponting, T. G. Belgard, Transcribed dark matter: meaning or myth?, Hum. Mol. Genet., 19 (2010), R162-R168 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/hmg/ddq362'>10.1093/hmg/ddq362</ext-link>

[247] J. Ponjavic, C. P. Ponting, G. Lunter, “Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs”, Genome Res, 17 (2007), 556–565 <ext-link ext-link-type='doi' href='https://doi.org/10.1101/gr.6036807'>10.1101/gr.6036807</ext-link>

[248] K. C. Pang, M. C. Frith, J. S. Mattick, “Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function”, Trends Genet, 22 (2006), 1–5 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.tig.2005.10.003'>10.1016/j.tig.2005.10.003</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1201.91006'>1201.91006</ext-link>

[249] J. L. Rinn, H. Y. Chang, “Genome regulation by long noncoding RNAs”, Annu. Rev. Biochem, 81 (2012), 145–166 <ext-link ext-link-type='doi' href='https://doi.org/10.1146/annurev-biochem-051410--092902'>10.1146/annurev-biochem-051410--092902</ext-link>

[250] K. C. Wang, H. Y. Chang, “Molecular mechanisms of long noncoding RNAs”, Mol. Cell, 43 (2011), 904–914 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.molcel.2011.08.018'>10.1016/j.molcel.2011.08.018</ext-link>

[251] M. Guttman, I. Amit, M. Garber, C. French, M. F. Lin, D. Feldser, M. Huarte, O. Zuk, B. W. Carey, J. P. Cassady et al, “Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals”, Nature, 458 (2009), 223–227 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nature07672'>10.1038/nature07672</ext-link>

[252] M. G. Guenther, S. S. Levine, L. A. Boyer, R. Jaenisch, R. A. Young, “A chromatin landmark and transcription initiation at most promoters in human cells”, Cell, 130 (2007), 77–88 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cell.2007.05.042'>10.1016/j.cell.2007.05.042</ext-link>

[253] R. C. Spitale, M. C. Tsai, H. Y. Chang, “RNA templating the epigenome: Long noncoding RNAs as molecular scaffolds”, Epigenetics, 6 (2011), 539–543 <ext-link ext-link-type='doi' href='https://doi.org/10.4161/epi.6.5.15221'>10.4161/epi.6.5.15221</ext-link>

[254] M. C. Good, J. G. Zalatan, W. A. Lim, “Scaffold proteins: hubs for controlling the flow of cellular information”, Science, 332 (2011), 680–686 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.1198701'>10.1126/science.1198701</ext-link>

[255] L. Duret, C. Chureau, S. Samain, J. Weissenbach, P. Avner, “The Xist RNA gene evolved in eutherians by pseudogenization of a protein-coding gene”, Science, 312 (2006), 1653–1655 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.1126316'>10.1126/science.1126316</ext-link>

[256] E. A. Elisaphenko, N. N. Kolesnikov, A. I. Shevchenko, I. B. Rogozin, T. B. Nesterova, N. Brockdorff, S. M. Zakian, “A dual origin of the Xist gene from a protein-coding gene and a set of transposable elements”, PLoS ONE, 3 (2008) <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.pone.0002521'>10.1371/journal.pone.0002521</ext-link>

[257] M. Hadjiargyrou, N. Delihas, “The intertwining of transposable elements and non-coding RNAs”, Int. J. Mol. Sci, 14 (2013), 13307–13328 <ext-link ext-link-type='doi' href='https://doi.org/10.3390/ijms140713307'>10.3390/ijms140713307</ext-link>

[258] J. Piriyapongsa, I. K. Jordan, “A family of human microRNA genes from miniature inverted-repeat transposable elements”, PLoS ONE, 2 (2007), e203 <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.pone.0000203'>10.1371/journal.pone.0000203</ext-link>

[259] Z. Yuan, X. Sun, D. Jiang, Y. Ding, Z. Lu, L. Gong, H. Liu, J. Xie, “Origin and evolution of a placental-specific microRNA family in the human genome”, BMC Evol. Biol, 10 (2010), 346 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/1471--2148--10--346'>10.1186/1471--2148--10--346</ext-link>

[260] K. Ahn, J. A. Gim, H. S. Ha, K. Han, H. S. Kim, “The novel MER transposon-derived miRNAs in human genome”, Gene, 512 (2013), 422–428 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.gene.2012.08.028'>10.1016/j.gene.2012.08.028</ext-link>

[261] S. Kannan, D. Chernikova, I. B. Rogozin, E. Poliakov, D. Managadze, E. V. Koonin, L. Milanesi, “Transposable element insertions in long intergenic non-coding RNA genes”, Front. Bioeng. Biotechnol, 3 (2015), 71 <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fbioe.2015.00071'>10.3389/fbioe.2015.00071</ext-link>

[262] D. Kelley, J. Rinn, “Transposable elements reveal a stem cell-specific class of long noncoding RNAs”, Genome Biol., 13:11 (2012), R107 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/gb-2012--13--11-r107'>10.1186/gb-2012--13--11-r107</ext-link>

[263] M. N. Cabili, C. Trapnell, L. Goff, M. Koziol, B. Tazon-Vega, A. Regev, J. L. Rinn, “Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses”, Genes Dev., 25 (2011), 1915–1927 <ext-link ext-link-type='doi' href='https://doi.org/10.1101/gad.17446611'>10.1101/gad.17446611</ext-link>

[264] A. Ali, K. Han, P. Liang, “Role of Transposable Elements in Gene Regulation in the Human Genome”, Life (Basel), 11:2 (2021), 118 <ext-link ext-link-type='doi' href='https://doi.org/10.3390/life11020118'>10.3390/life11020118</ext-link>

[265] D. Managadze, A. E. Lobkovsky, Y. I. Wolf, S. A. Shabalina, I. B. Rogozin, Koonin E. V., “The Vast, Conserved Mammalian lincRNome”, PLoS Comput Biol, 9:2 (2013) <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.pcbi.1002917'>10.1371/journal.pcbi.1002917</ext-link>

[266] Z. Song, J. Lin, Z. Li, C. Huang, “The nuclear functions of long noncoding RNAs come into focus”, Noncoding RNA Res, 6:2 (2021), 70–79 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.ncrna.2021.03.002'>10.1016/j.ncrna.2021.03.002</ext-link>

[267] U. Braunschweig, S. Gueroussov, A. M. Plocik, B. R. Graveley, B. J. Blencowe, “Dynamic integration of splicing within gene regulatory pathways”, Cell, 152:6 (2013), 1252–1269 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cell.2013.02.034'>10.1016/j.cell.2013.02.034</ext-link>

[268] E. T. Wang, R. Sandberg, S. Luo, I. Khrebtukova, L. Zhang, C. Mayr, S. F. Kingsmore, G. P. Schroth, C. B. Burge, “Alternative isoform regulation in human tissue transcriptomes”, Nature, 456:7221 (2008), 470–476 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nature07509'>10.1038/nature07509</ext-link>

[269] Y. Enuka, M. Lauriola, M. E. Feldman, A. Sas-Chen, I. Ulitsky, Y. Yarden, “Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor”, Nucleic Acids Res, 44:3 (2016), 1370–1383 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkv1367'>10.1093/nar/gkv1367</ext-link>

[270] M. T. Hsu, M. Coca-Prados, “Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells”, Nature, 280:5720 (1979), 339–340 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/280339a0'>10.1038/280339a0</ext-link>

[271] B. Capel, A. Swain, S. Nicolis, A. Hacker, M. Walter, P. Koopman, P. Goodfellow, R. Lovell-Badge, “Circular transcripts of the testis-determining gene Sry in adult mouse testis”, Cell, 73:5 (1993), 1019–1030 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0092--8674(93)90279-y'>10.1016/0092--8674(93)90279-y</ext-link>

[272] C. Cocquerelle, P. Daubersies, M. A. Majerus, J. P. Kerckaert, B. Bailleul, “Splicing with inverted order of exons occurs proximal to large introns”, EMBO J., 11:3 (1992), 1095–1098 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/j.1460-2075.1992.tb05148.x'>10.1002/j.1460-2075.1992.tb05148.x</ext-link>

[273] J. M. Nigro, K. R. Cho, E. R. Fearon, S. E. Kern, J. M. Ruppert, J. D. Oliner, K. W. Kinzler, Vogelstein B., “Scrambled exons”, Cell, 64:3 (1991), 607–613 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0092--8674(91)90244-s'>10.1016/0092--8674(91)90244-s</ext-link>

[274] P. G. Zaphiropoulos, “Circular RNAs from transcripts of the rat cytochrome P450 2C24 gene: correlation with exon skipping”, PNAS, 93:13 (1996), 6536–6541 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.93.13.6536'>10.1073/pnas.93.13.6536</ext-link>

[275] P. G. Zaphiropoulos, “Exon skipping and circular RNA formation in transcripts of the human cytochrome P-450 2C18 gene in epidermis and of the rat androgen binding protein gene in testis”, Mol. Cell Biol, 17:6 (1997), 2985–2993 <ext-link ext-link-type='doi' href='https://doi.org/10.1128/mcb.17.6.2985'>10.1128/mcb.17.6.2985</ext-link>

[276] A. Rybak-Wolf, C. Stottmeister, P. Glazar, M. Jens, N. Pino, S. Giusti, M. Hanan, M. Behm, O. Bartok, R. Ashwal-Fluss et al, “Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed”, Mol. Cell, 58:5 (2015), 870–885 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.molcel.2015.03.027'>10.1016/j.molcel.2015.03.027</ext-link>

[277] J. Salzman, R. E. Chen, M. N. Olsen, P. L. Wang, P. O. Brown, “Cell-type specific features of circular RNA expression”, PLoS Genet., 9 (2013), e1003777 <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.pgen.1003777'>10.1371/journal.pgen.1003777</ext-link>

[278] W. R. Jeck, J. A. Sorrentino, K. Wang, M. K. Slevin, C. E. Burd, J. Liu, W. F. Marzluff, N. E. Sharpless, “Circular RNAs are abundant, conserved, and associated with ALU repeats”, RNA, 19:2 (2013), 141–157 <ext-link ext-link-type='doi' href='https://doi.org/10.1261/rna.035667.112'>10.1261/rna.035667.112</ext-link>

[279] J. Salzman, C. Gawad, P. L. Wang, N. Lacayo, P. O. Brown, “Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types”, PLoS One, 7:2 (2012), e30733 <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.pone.0030733'>10.1371/journal.pone.0030733</ext-link>

[280] J. U. Guo, V. Agarwal, H. Guo, D. P. Bartel, “Expanded identification and characterization of mammalian circular RNAs”, Genome Biol, 15:7 (2014), 409 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/s13059--014--0409-z'>10.1186/s13059--014--0409-z</ext-link>

[281] J. Salzman, C. Gawad, P. L. Wang, N. Lacayo, P. O. Brown, “Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types”, PLoS ONE, 7 (2012), e30733 <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.pone.0030733'>10.1371/journal.pone.0030733</ext-link>

[282] J. U. Guo, V. Agarwal, H. Guo, D. P. Bartel, “Expanded identification and characterization of mammalian circular RNAs”, Genome Biol, 15 (2014), 409 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/s13059--014--0409-z'>10.1186/s13059--014--0409-z</ext-link>

[283] W. W. Du, W. Yang, E. Liu, Z. Yang, P. Dhaliwal, B. B. Yang, “Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2”, Nucleic Acids Res, 44 (2016), 2846–2858 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkw027'>10.1093/nar/gkw027</ext-link>

[284] K. Abdelmohsen, A. C. Panda, R. Munk, I. Grammatikakis, D. B. Dudekula, S. De, J. Kim, J. H. Noh, K. M. Kim, J. L. Martindale, M. Gorospe, “Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1”, RNA Biol, 14:3 (2017), 361–369 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/15476286.2017.1279788'>10.1080/15476286.2017.1279788</ext-link>

[285] R. T. Zhao, J. Zhou, X. L. Dong, C. W. Bi, R. C. Jiang, J. F. Dong, Y. Tian, H. J. Yuan, J. N. Zhang, “Circular Ribonucleic Acid Expression Alteration in Exosomes from the Brain Extracellular Space after Traumatic Brain Injury in Mice”, J. Neurotrauma, 35 (2018), 2056–2066 <ext-link ext-link-type='doi' href='https://doi.org/10.1089/neu.2017.5502'>10.1089/neu.2017.5502</ext-link>

[286] C. Preusser, L. H. Hung, T. Schneider, S. Schreiner, M. Hardt, A. Moebus, S. Santoso, A. Bindereif, “Selective release of circRNAs in platelet-derived extracellular vesicles”, J. Extracell Vesicles, 7:1 (2018), 1424473 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/20013078.2018.1424473'>10.1080/20013078.2018.1424473</ext-link>

[287] I. Legnini, G. Di Timoteo, F. Rossi, M. Morlando, F. Briganti, O. Sthandier, A. Fatica, T. Santini, A. Andronache, M. Wade et al, “Circ-ZNF609 is a circular RNA that can be translated and functions in Myogenesis”, Mol. Cell., 66:1 (2017), e9, 22–37 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.molcel.2017.02.017'>10.1016/j.molcel.2017.02.017</ext-link>

[288] Y. Wang, Z. Wang, “Efficient backsplicing produces translatable circular mRNAs”, RNA, 21:2 (2015), 172–179 <ext-link ext-link-type='doi' href='https://doi.org/10.1261/rna.048272.114'>10.1261/rna.048272.114</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1154525'>1154525</ext-link>

[289] N. R. Pamudurti, O. Bartok, M. Jens, R. Ashwal-Fluss, C. Stottmeister, L. Ruhe, M. Hanan, E. Wyler, D. Perez-Hernandez, E. Ramberger et al, “Translation of CircRNAs”, Mol. Cell., 66:1 (2017), e7, 9–21 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.molcel.2017.02.021'>10.1016/j.molcel.2017.02.021</ext-link>

[290] M. Zhang, K. Zhao, X. Xu, Y. Yang, S. Yan, P. Wei, H. Liu, J. Xu, F. Xiao, H. Zhou et al, “A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma”, Nat. Commun, 9:1 (2018), 4475 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41467--018--06862--2'>10.1038/s41467--018--06862--2</ext-link>

[291] X. O. Zhang, H. B. Wang, Y. Zhang, X. Lu, L. L. Chen, L. Yang, “Complementary sequence-mediated exon circularization”, Cell, 159:1 (2014), 134–147 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cell.2014.09.001'>10.1016/j.cell.2014.09.001</ext-link>

[292] R. Ashwal-Fluss, M. Meyer, N. R. Pamudurti, A. Ivanov, O. Bartok, M. Hanan, N. Evantal, S. Memczak, N. Rajewsky, S. Kadener, “circRNA biogenesis competes with pre-mRNA splicing”, Mol. Cell, 56:1 (2014), 55–66 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.molcel.2014.08.019'>10.1016/j.molcel.2014.08.019</ext-link>

[293] J. O. Westholm, P. Miura, S. Olson, S. Shenker, B. Joseph, P. Sanfilippo, S. E. Celniker, B. R. Graveley, E. C. Lai, “Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation”, Cell Rep, 9:5 (2014), 1966–1980 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.celrep.2014.10.062'>10.1016/j.celrep.2014.10.062</ext-link>

[294] S. P. Barrett, P. L. Wang, J. Salzman, “Circular RNA biogenesis can proceed through an exon-containing lariat precursor”, Elife, 4 (2015), e07540 <ext-link ext-link-type='doi' href='https://doi.org/10.7554/eLife.07540'>10.7554/eLife.07540</ext-link>

[295] L. S. Kristensen, T. L.H. Okholm, M. T. Veno, J. Kjems, “Circular RNAs are abundantly expressed and upregulated during human epidermal stem cell differentiation”, RNA Biol, 15:2 (2018), 280–291 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/15476286.2017.1409931'>10.1080/15476286.2017.1409931</ext-link>

[296] M. C. Kramer, D. Liang, D. C. Tatomer, B. Gold, Z. M. March, S. Cherry, J. E. Wilusz, “Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins”, Genes Dev, 29:20 (2015), 2168–2182 <ext-link ext-link-type='doi' href='https://doi.org/10.1101/gad.270421.115'>10.1101/gad.270421.115</ext-link>

[297] Y. Zhang, W. Xue, X. Li, J. Zhang, S. Chen, J. L. Zhang, L. Yang, L. L. Chen, “The biogenesis of nascent circular RNAs”, Cell Rep, 15:3 (2016), 611–624 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.celrep.2016.03.058'>10.1016/j.celrep.2016.03.058</ext-link>

[298] J. E. Wilusz, “A 360 degrees view of circular RNAs: from biogenesis to functions”, Wiley Interdiscip. Rev. RNA, 9:4 (2018), e1478 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/wrna.1478'>10.1002/wrna.1478</ext-link>

[299] M. S. Xiao, Y. Ai, J. E. Wilusz, “Biogenesis and functions of circular RNAs come into focus”, Trends Cell Biol, 30:3 (2020), 226–240 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.tcb.2019.12.004'>10.1016/j.tcb.2019.12.004</ext-link>

[300] C. Y. Yu, H. C. Kuo, “The emerging roles and functions of circular RNAs and their generation”, J. Biomed. Sci, 26 (2019), 29 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/s12929--019--0523-z'>10.1186/s12929--019--0523-z</ext-link>

[301] P. Glazar, P. Papavasileiou, N. Rajewsky, “circBase: a database for circular RNAs”, RNA, 20:11 (2014), 1666–16670 <ext-link ext-link-type='doi' href='https://doi.org/10.1261/rna.043687.113'>10.1261/rna.043687.113</ext-link>

[302] Y. C. Liu, J. R. Li, C. H. Sun, E. Andrews, R. F. Chao, F. M. Lin, S. L. Weng, S. D. Hsu, C. C. Huang, C. Cheng et al, “CircNet: a database of circular RNAs derived from transcriptome sequencing data”, Nucleic Acids Res., 44:D1 (2016), D209-D215 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkv940'>10.1093/nar/gkv940</ext-link>

[303] S. Ghosal, S. Das, R. Sen, P. Basak, J. Chakrabarti, “Circ2Traits: a comprehensive database for circular RNA potentially associated with disease and traits”, Front. Genet, 4 (2013), 283 <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fgene.2013.00283'>10.3389/fgene.2013.00283</ext-link>

[304] D. Yao, L. Zhang, M. Zheng, X. Sun, Y. Lu, P. Liu, “Circ2Disease: a manually curated database of experimentally validated circRNAs in human disease”, Sci. Rep, 8:1 (2018), 11018 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41598--018--29360--3'>10.1038/s41598--018--29360--3</ext-link>

[305] S. Li, Y. Li, B. Chen, J. Zhao, S. Yu, Y. Tang, Q. Zheng, Y. Li, P. Wang, X. He, S. Huang, “exoRBase: a database of circRNA, lncRNA and mRNA in human blood exosomes”, Nucleic Acids Res., 46 (2018), D106-D112 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkx891'>10.1093/nar/gkx891</ext-link>

[306] S. Xia, J. Feng, K. Chen, Y. Ma, J. Gong, F. Cai, Y. Jin, Y. Gao, L. Xia, H. Chang et al, “CSCD: a database for cancer-specific circular RNAs”, Nucleic Acids Res., 46:D1 (2018), D925-D929 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkx86'>10.1093/nar/gkx86</ext-link>

[307] I. Laudadio, C. Carissimi, V. Fulci, “How RNAi machinery enters the world of telomerase”, Cell Cycle, 18 (2019), 1056–1067 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/15384101.2019.1609834'>10.1080/15384101.2019.1609834</ext-link>

[308] Altman S., “Ribonuclease”, P. Philos. Trans. R. Soc. Lond. B. Biol Sci, 366 (2011), 2936–2941 <ext-link ext-link-type='doi' href='https://doi.org/10.1098/rstb.2011.0142'>10.1098/rstb.2011.0142</ext-link>

[309] P. R. Arnold, A. D. Wells, X. C. Li, “Diversity and Emerging Roles of Enhancer RNA in Regulation of Gene Expression and Cell Fate”, Frontiers in Cell and Developmental Biology, 7 (2020), 377 <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fcell.2019.00377'>10.3389/fcell.2019.00377</ext-link>

[310] S. Bhogireddy, S. K. Mangrauthia, R. Kumar, A. K. Pandey, S. Singh, A. Jain, H. Budak, R. K. Varshney, H. Kudapa, “Regulatory non-coding RNAs: a new frontier in regulation of plant biology”, Funct. Integr. Genomics, 21 (2021), 313–330 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s10142--021--00787--8'>10.1007/s10142--021--00787--8</ext-link>

[311] L. Song, Y. Fang, L. Chen, J. Wang, X. Chen, “Role of non-coding RNAs in plant immunity”, Plant Commun, 2 (2021), 100180 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.xplc.2021.100180'>10.1016/j.xplc.2021.100180</ext-link>

[312] N. Wu, B. B. Yang, “The Biological Functions of Non-coding RNAs: From a Line to a Circle”, Discoveries (Craiova), 3 (2015), e48 <ext-link ext-link-type='doi' href='https://doi.org/10.15190/d.2015.40'>10.15190/d.2015.40</ext-link>

[313] H. Cerutti, J. A. Casas-Mollano, “On the origin and functions of RNA-mediated silencing: from protists to man”, Curr. Genet, 50 (2006), 81–99 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s00294--006--0078-x'>10.1007/s00294--006--0078-x</ext-link>

[314] Grigoriev A., “Transfer RNA and Origins of RNA Interference”, Front Mol Biosci, 8 (2021), 708984 <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fmolb.2021.708984'>10.3389/fmolb.2021.708984</ext-link>

[315] J. Mohammed, A. S. Flynt, A. M. Panzarino, M. M.H. Mondal, M. DeCruz, A. Siepel, E. C. Lai, “Deep experimental profiling of microRNA diversity, deployment, and evolution across the Drosophila genus”, Genome Res, 28 (2018), 52–65 <ext-link ext-link-type='doi' href='https://doi.org/10.1101/gr.226068.117'>10.1101/gr.226068.117</ext-link>

[316] Gilbert W., “Origin of life: The RNA world”, Nature, 319 (1986), 618 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/319618a0'>10.1038/319618a0</ext-link>

[317] F. H. Crick, “The origin of the genetic code”, J. Mol. Biol, 38 (1968), 367–379 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0022-2836(68)90392-6'>10.1016/0022-2836(68)90392-6</ext-link>

[318] Orgel L.E., “Evolution of the genetic apparatus”, J. Mol. Biol., 38 (1968), 381–393 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0022-2836(68)90393-8'>10.1016/0022-2836(68)90393-8</ext-link>

[319] C. R. Woese, The genetic code: The molecular basis for genetic expression, Harper & Row, 1967, 186 pp.

[320] S. R. Eddy, “Computational genomics of noncoding RNA genes”, Cell, 109 (2002), 137–140 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0092-8674(02)00727-4'>10.1016/S0092-8674(02)00727-4</ext-link>

[321] Atkins J. F., R. F. Gesteland, T. R. Cech (eds.), RNA Worlds: From Life's Origins to Diversity in Gene Regulation, Cold Spring Harbor Laboratory Press, 2011, 366 pp.

[322] Kunin E. V., Logika sluchaya. O prirode i proiskhozhdenii biologicheskoi evolyutsii, ZAO Izdatelstvo Tsentrpoligraf, M., 2017, 527 pp.

[323] K. Bokov, S. V. Steinberg, “A hierarchical model for evolution of 23S ribosomal RNA”, Nature, 457 (2009), 977–980 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nature07749'>10.1038/nature07749</ext-link>

[324] N. E. Skoblikow, A. A. Zimin, “A search for relict ribonucleotide and amino acid sequences that played a key role in the development of the ribosome and modern protein diversity”, Math. Biol. Bioinf, 10 (2015), 116–130 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2015.10.116'>10.17537/2015.10.116</ext-link>

[325] N. N. Nazipova, E. A. Isaev, V. V. Kornilov, D. V. Pervukhin, A. A. Morozova, A. A. Gorbunov, M. N. Ustinin, “Big Data in Bioinformatics”, Math. Biol. Bioinf., 13 (2018), t1–t16 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2018.13.t1'>10.17537/2018.13.t1</ext-link>