Simulation of air motion in human lungs during breathing. Dynamics of liquid droplet precipitation in the case of medicine drug aerosols
Matematičeskaâ biologiâ i bioinformatika, Tome 16 (2021), pp. 422-438.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with numerical simulation of the air flow in the full human bronchial tree. In their previous studies, the authors developed an analytical model of the full human bronchial tree and a method of stage-by-stage computation of the respiratory tract. A possibility of using the proposed method for a wide range of problems of numerical simulations of the air flow in human lungs is analyzed. The following situations are considered: 1) steady inspiration (with different flow rates of air) for circular and “starry” cross sections of bronchi (“starry” cross sections models some lung pathology); 2) steady expiration; 3) unsteady inspiration; 4) precipitation of medical drug aerosol droplets in human bronchi. The results predicted by the proposed method are compared with results of other researchers and found to be in good agreement. In contrast to previous investigations, the air flow in the full (down to alveoli) bronchial tree is studied for the first time. It is shown that expiration requires a greater pressure difference (approximately by 30%) than inspiration. Numerical simulations of precipitation of medical drug aerosol droplets in the human respiratory tract show that aerosol droplets generated by a standard nebulizer do not reach the alveoli (the droplets settle down in the lower regions of the bronchi).
@article{MBB_2021_16_a11,
     author = {A. E. Medvedev and P. S. Golysheva},
     title = {Simulation of air motion in human lungs during breathing. {Dynamics} of liquid droplet precipitation in the case of medicine drug aerosols},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {422--438},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2021_16_a11/}
}
TY  - JOUR
AU  - A. E. Medvedev
AU  - P. S. Golysheva
TI  - Simulation of air motion in human lungs during breathing. Dynamics of liquid droplet precipitation in the case of medicine drug aerosols
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2021
SP  - 422
EP  - 438
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2021_16_a11/
LA  - ru
ID  - MBB_2021_16_a11
ER  - 
%0 Journal Article
%A A. E. Medvedev
%A P. S. Golysheva
%T Simulation of air motion in human lungs during breathing. Dynamics of liquid droplet precipitation in the case of medicine drug aerosols
%J Matematičeskaâ biologiâ i bioinformatika
%D 2021
%P 422-438
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2021_16_a11/
%G ru
%F MBB_2021_16_a11
A. E. Medvedev; P. S. Golysheva. Simulation of air motion in human lungs during breathing. Dynamics of liquid droplet precipitation in the case of medicine drug aerosols. Matematičeskaâ biologiâ i bioinformatika, Tome 16 (2021), pp. 422-438. http://geodesic.mathdoc.fr/item/MBB_2021_16_a11/

[1] A. Peters, H. E. Wichmann, T. Tuch, J. Heinrich, J. Heyder, “Respiratory Effects are Associated with the Number of Ultrafine Particles”, Am. J. Respir. Crit. Care Med, 155 (1997), 1376–1383 <ext-link ext-link-type='doi' href='https://doi.org/10.1164/ajrccm.155.4.9105082'>10.1164/ajrccm.155.4.9105082</ext-link>

[2] E. R. Veibel, Morfometriya legkikh cheloveka, Meditsina, M., 1970, 176 pp.

[3] N. Nowak, P. P. Kadake, A. V. Annapragada, “Computational fluid dynamics simulation of airflow and aerosol deposition in human lungs”, Journal Annals of Biomedical Engineering, 31:4 (2003), 374–390 <ext-link ext-link-type='doi' href='https://doi.org/10.1114/1.1560632'>10.1114/1.1560632</ext-link>

[4] Z. Zhang, C. Kleinstreuer, C. S. Kim, “Airflow and nanoparticle deposition in a 16-generation tracheobronchial airway model”, Journal Annals of Biomedical Engineering, 36:12 (2008), 2095–2110 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s10439--008--9583-z'>10.1007/s10439--008--9583-z</ext-link>

[5] M. S. Islam, G. Paul, H. X. Ong, P. M. Young, Y. T. Gu, S. C. Saha, “A Review of Respiratory Anatomical Development, Air Flow Characterization and Particle Deposition”, International Journal of Environmental Research and Public Health, 17:2 (2020), 380 <ext-link ext-link-type='doi' href='https://doi.org/10.3390/ijerph17020380'>10.3390/ijerph17020380</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=4231122'>4231122</ext-link>

[6] D. K. Walters, G. W. Burgreen, R. L. Hester, D. S. Thompson, D. M. Lavallee, W. A. Pruett, X. Wang, “Cyclic Breathing Simulations in Large-Scale Models of the Lung Airway from the Oronasal Opening to the Terminal Bronchioles”, J. Fluids Eng, 136 (2014), 101101 <ext-link ext-link-type='doi' href='https://doi.org/10.1115/1.4027485'>10.1115/1.4027485</ext-link>

[7] M. S. Islam, S. C. Saha, E. Sauret, T. Gemci, I. A. Yang, Y. T. Gua, “Ultrafine particle transport and deposition in a large scale 17-generation lung model”, Journal of Biomechanics, 64 (2017), 16–25 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jbiomech.2017.08.028'>10.1016/j.jbiomech.2017.08.028</ext-link>

[8] M. S. Islam, S. C. Saha, P. M. Young, “Aerosol particle transport and deposition in a CT-based lung airway for helium-oxygen mixture”, Proceedings of the 21st Australasian Fluid Mechanics Conference (Adelaide, Australia, December 2018), 2018, 10–13

[9] A. E. Medvedev, P. S. Gafurova, “Analiticheskoe postroenie polnogo bronkhialnogo dereva cheloveka v norme i pri obstruktivnoi bolezni legkikh”, Matematicheskaya biologiya i bioinformatika, 14, Suppl. (2019), 162–175 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2019.14.t62'>10.17537/2019.14.t62</ext-link>

[10] A. E. Medvedev, “Metodika postroeniya nesimmetrichnogo bronkhialnogo dereva cheloveka v norme i pri patologii”, Matematicheskaya biologiya i bioinformatika, 15, Suppl. (2020), t21–t31 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2020.15.t21'>10.17537/2020.15.t21</ext-link>

[11] A. F. Tena, P. Casan, J. Fernandez, C. Ferrera, A. Marcos, “Characterization of particle deposition in a lung model using an individual path”, EPJ Web of Conferences, 45 (2013) <ext-link ext-link-type='doi' href='https://doi.org/10.1051/epjconf/20134501079'>10.1051/epjconf/20134501079</ext-link>

[12] A. F. Tena, J. F. Francos, E. Alvarez, P. Casan, “A three dimensional in SILICO model for the simulation of inspiratory and expiratory airflow in humans”, Engineering Applications of Computational Fluid Mechanics, 9:1 (2015), 187–198 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/19942060.2015.1004819'>10.1080/19942060.2015.1004819</ext-link>

[13] A. F. Tena, J. Fernandez, E. Alvarez, P. Casan, D. Keith Walters, “Design of a numerical model of lung by means of a special boundary condition in the truncated branches”, International Journal for Numerical Methods in Biomedical Engineering, 33:6 (2017) <ext-link ext-link-type='doi' href='https://doi.org/10.1002/cnm.2830'>10.1002/cnm.2830</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3670871'>3670871</ext-link>

[14] A. E. Medvedev, V. M. Fomin, P. S. Gafurova, “Trekhmernaya model bronkhialnogo dereva cheloveka modelirovanie techeniya vozdukha v norme i pri patologii”, Prikladnaya mekhanika i tekhnicheskaya fizika, 61:1 (2020), 3–16 <ext-link ext-link-type='doi' href='https://doi.org/10.15372/PMTF20200101'>10.15372/PMTF20200101</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1451.92007'>1451.92007</ext-link>

[15] P. V. Trusov, N. V. Zaitseva, M. Yu. Tsinker, “Modelirovanie protsessa dykhaniya cheloveka: kontseptualnaya i matematicheskaya postanovki”, Matematicheskaya biologiya i bioinformatika, 11:1 (2016), 64–80 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2016.11.64'>10.17537/2016.11.64</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1399777'>1399777</ext-link>

[16] P. V. Trusov, N. V. Zaitseva, M. Yu. Tsinker, A. V. Babushkina, “Modelirovanie techeniya zapylennogo vozdukha v respiratornom trakte”, Rossiiskii zhurnal biomekhaniki, 22:3 (2018), 301–314 <ext-link ext-link-type='doi' href='https://doi.org/10.15593/RZhBiomeh/2018.3.03'>10.15593/RZhBiomeh/2018.3.03</ext-link>

[17] M. R. Miller, J. Hankinson, V. Brusasco, F. Burgos, R. Casaburi, A. Coates, R. Crapo, P. Enright, C. P.M. van der Grinten, P. Gustafsson et al, “Standardisation of spirometry”, European Respiratory Journal, 26 (2005), 319–338 <ext-link ext-link-type='doi' href='https://doi.org/10.1183/09031936.05.00034805'>10.1183/09031936.05.00034805</ext-link>

[18] V. L. Ganimedov, M. I. Muchnaya, A. S. Sadovskii, “Techenie vozdukha v nosovoi polosti cheloveka. Rezultaty matematicheskogo modelirovaniya”, Rossiiskii zhurnal biomekhaniki, 19:1 (2015), 37–51 <ext-link ext-link-type='doi' href='https://doi.org/10.15593/RZhBiomeh/2015.1.03'>10.15593/RZhBiomeh/2015.1.03</ext-link>

[19] V. M. Fomin, V. N. Vetlutskii, V. L. Ganimedov, M. I. Muchnaya, V. N. Shepelenko, M. N. Melnikov, A. A. Savina, “Issledovanie techeniya vozdukha v nosovoi polosti cheloveka”, Prikladnaya mekhanika i tekhnicheskaya fizika, 51:2 (300) (2010), 107–115 <ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1272.76325'>1272.76325</ext-link>

[20] V. L. Ganimedov, M. I. Muchnaya, “Chislennoe modelirovanie osazhdeniya chastits v nosovoi polosti cheloveka”, Teplofizika i aeromekhanika, 27:2 (2020), 317–328

[21] G. N. Lukyanov, A. A. Voronin, A. A. Rassadina, “Modelirovanie konvektivnykh potokov v kanalakh neregulyarnoi formy na primere polosti nosa i okolonosovykh pazukh cheloveka”, Zhurnal tekhnicheskoi fiziki, 87:3 (2017), 462–467 <ext-link ext-link-type='doi' href='https://doi.org/10.21883/JTF.2017.03.44256.1919'>10.21883/JTF.2017.03.44256.1919</ext-link>

[22] Hermes O., Hadamard-Rybczynski Equation, Bellum Publ., 2012

[23] A. E. Medvedev, P. S. Gafurova, “Air flow and precipitation of medicine aerosol droplets in the human bronchial tree”, AIP Conference Proceedings, 2351:1 (2021), 030018 <ext-link ext-link-type='doi' href='https://doi.org/1063/5.0051724'>1063/5.0051724</ext-link>

[24] A. E. Medvedev, P. S. Gafurova, “Simulation of the deposition of aerosol droplets in a person's bronchial tree”, Journal of Physics: Conference Series, 1404 (2019) <ext-link ext-link-type='doi' href='https://doi.org/10.1088/1742--6596/1404/1/012031'>10.1088/1742--6596/1404/1/012031</ext-link>