Charge motion along polynucleotide chains in a constant electric field depends on the charge coupling constant with chain displacements
Matematičeskaâ biologiâ i bioinformatika, Tome 16 (2021), pp. 411-421.

Voir la notice de l'article provenant de la source Math-Net.Ru

Various regimes of a charge motion along a chain in a constant electric field are investigated. This motion is simulated on the basis of the Holstein model. Earlier studies demonstrate a possibility of a uniform motion of a charge in a constant electric field over very long distances. For small values of the electric field intensity a Holstein polaron can move at a constant velocity. As the electric field intensity increases, a charge motion acquires oscillatorily character, performing Bloch oscillations. Since the charge motion depends on the whole set of the system parameters the character of the motion depends not only on the value of the electric field intensity. Therefore, the electric field intensity for which the uniform motion takes place differs for chains with different parameters. The character of the charge motion and distribution is considered in chains with different values of the constant of coupling between the charge and the displacements of the chain. We showed that the values of the electric field intensity for which the regime of a charge motion changes are different in chains with different values of the coupling constant. We also demonstrated that for one and the same value of the electric field intensity, in chains with different values of the coupling constant either a uniform motion or an oscillatory motion, or a stationary polaron can be observed.
@article{MBB_2021_16_a10,
     author = {A. N. Korshounova and V. D. Lakhno},
     title = {Charge motion along polynucleotide chains in a constant electric field depends on the charge coupling constant with chain displacements},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {411--421},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2021_16_a10/}
}
TY  - JOUR
AU  - A. N. Korshounova
AU  - V. D. Lakhno
TI  - Charge motion along polynucleotide chains in a constant electric field depends on the charge coupling constant with chain displacements
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2021
SP  - 411
EP  - 421
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2021_16_a10/
LA  - en
ID  - MBB_2021_16_a10
ER  - 
%0 Journal Article
%A A. N. Korshounova
%A V. D. Lakhno
%T Charge motion along polynucleotide chains in a constant electric field depends on the charge coupling constant with chain displacements
%J Matematičeskaâ biologiâ i bioinformatika
%D 2021
%P 411-421
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2021_16_a10/
%G en
%F MBB_2021_16_a10
A. N. Korshounova; V. D. Lakhno. Charge motion along polynucleotide chains in a constant electric field depends on the charge coupling constant with chain displacements. Matematičeskaâ biologiâ i bioinformatika, Tome 16 (2021), pp. 411-421. http://geodesic.mathdoc.fr/item/MBB_2021_16_a10/

[1] A. P. Chetverikov, W. Ebeling, V. D. Lakhno, M. G. Velarde, “Discrete-breather-assisted charge transport along DNA-like molecular wires”, Phys. Rev. E, 100 (2019), 052203 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevE.100.052203'>10.1103/PhysRevE.100.052203</ext-link>

[2] Taniguchi M., Kawai T., “DNA electronics”, Physica E, 33 (2006), 1–12 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.physe.2006.01.005'>10.1016/j.physe.2006.01.005</ext-link>

[3] E. B. Starikov, J. P. Lewis, O. F. Sankey, “Base sequence effects on charge carrier generation in DNA: a theoretical study”, International Journal of Modern Physics B, 19:29 (2005), 4331–4357 <ext-link ext-link-type='doi' href='https://doi.org/10.1142/S0217979205032802'>10.1142/S0217979205032802</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1076.92001'>1076.92001</ext-link>

[4] T. Yu. Astakhova, G. A. Vinogradov, “Polarons on Dimerized Lattice of Polyacetilene. Continuum Approximation”, Mathematical Biology and Bioinformatics, 16:2 (2021), 335–348 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2021.16.335'>10.17537/2021.16.335</ext-link>

[5] D. Porath, A. Bezryadin, S. De Vries, C. Dekker, “Direct measurement of electrical transport through DNA molecules”, Nature, 403 (2000), 635–638 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/35001029'>10.1038/35001029</ext-link>

[6] A. Y. Kasumov, M. Kociak, S. Gue?ron, B. Reulet, V. T. Volkov, D. V. Klinov, H. Bouchiat, “Proximity-Induced Superconductivity in DNA”, Science, 291:5502 (2001), 280–282 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.291.5502.280'>10.1126/science.291.5502.280</ext-link>

[7] V. D. Lakhno, “DNA nanobioelectronics”, Int. Quantum. Chem., 108 (2008), 1970–1981 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/qua.21717'>10.1002/qua.21717</ext-link>

[8] D. Porath, G. Cuniberti, R. Di Felice, “Charge transport in DNA-based devices”, Top. Curr. Chem., 237 (2004), 183–227 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/b94477'>10.1007/b94477</ext-link>

[9] R. G. Eudres, D. L. Cox, R. R.P. Singh, “Colloquium: The quest for high-conductance DNA”, Rev. Mod. Phys., 76:195 (2004) <ext-link ext-link-type='doi' href='https://doi.org/10.1103/RevModPhys.76.195'>10.1103/RevModPhys.76.195</ext-link>

[10] N. S. Fialko, V. D. Lakhno, “Dynamics of Large Radius Polaron in a Model Polynucleotide Chain with Random Perturbations”, Math. Biol. Bioinf., 14:2 (2019), 406–419 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2019.14.406'>10.17537/2019.14.406</ext-link>

[11] M. A. Fuentes, P. Maniadis, G. Kalosakas, K. O. Rasmussen, A. R. Bishop, V. M. Kenkre, Yu. B. Gaididei, “Multipeaked polarons in soft potentials”, Phys. Rev. E, 70 (2004), 025601 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevE.70.025601'>10.1103/PhysRevE.70.025601</ext-link>

[12] D. Hennig, A. D. Burbanks, A. H. Osbaldestin, “Directed current in the Holstein system”, Phys. Rev. E, 83 (2011), 031121 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevE.83.031121'>10.1103/PhysRevE.83.031121</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2788228'>2788228</ext-link>

[13] L. V. Yakushevich, V. N. Balashova, F. K. Zakiryanov, “On the DNA Kink Motion Under the Action of Constant Torque”, Math. Biol. Bioinf., 11:1 (2016), 81–90 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2016.11.81'>10.17537/2016.11.81</ext-link>

[14] V. D. Lakhno, “Davydov's solitons in a homogeneous nucleotide chain”, Int. J. Quant. Chem., 110 (2010), 127–137 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/qua.22264'>10.1002/qua.22264</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=913530'>913530</ext-link>

[15] A. N. Korshunova, V. D. Lakhno, “The Peculiarities of Polaron Motion in the Molecular Polynucleotide Chains of Finite Length In The Presence Of Localized Excitations in the Chain”, Math. Biol. Bioinf., 12:1 (2017), 204–223 (in Russ.) <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2017.12.204'>10.17537/2017.12.204</ext-link>

[16] E. M. Conwell, Rakhmanova S. V., “Polarons in DNA”, Proc. Natl. Acad. Sci, 97 (2000), 4556–4560 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.050074497'>10.1073/pnas.050074497</ext-link>

[17] V. D. Lakhno, “Soliton-like Solutions and Electron Transfer in DNA”, J. Biol. Phys., 26 (2000), 133–147 <ext-link ext-link-type='doi' href='https://doi.org/10.1023/A:1005275211233'>10.1023/A:1005275211233</ext-link>

[18] A. N. Korshunova, V. D. Lakhno, “A new type of localized fast moving electronic excitations in molecular chains”, Physica E, 60 (2014), 206–209 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.physe.2014.02.025'>10.1016/j.physe.2014.02.025</ext-link>

[19] Zhongkai Huang, Masayuki Hoshina, Hajime Ishihara, Yang Zhao, “Transient dynamics of super Bloch oscillations of a one dimensional Holstein polaron under the influence of an external AC electric field”, Annalen der Physik, 529 (2017), 1600367 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/andp.201600367'>10.1002/andp.201600367</ext-link>

[20] P. J. De Pablo, F. Moreno-Herrero, J. Colchero, J. Gomez Herrero, P. Herrero, A. M. Baro, P. Ordejon, J. M. Soler, E. Artacho, “Absence of dc-Conductivity in $\lambda$-DNA”, Phys. Rev. Lett., 85 (2000), 4992–4995 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevLett.85.4992'>10.1103/PhysRevLett.85.4992</ext-link>

[21] V. D. Lakhno, A. N. Korshunova, “Bloch oscillations of a soliton in a molecular chain”, Eur. Phys. J. B, 55 (2007), 85–87 <ext-link ext-link-type='doi' href='https://doi.org/10.1140/epjb/e2007-00045-3'>10.1140/epjb/e2007-00045-3</ext-link>

[22] V. D. Lakhno, A. N. Korshunova, “Electron motion in a Holstein molecular chain in an electric field”, Euro. Phys. J. B, 79 (2011), 147–151 <ext-link ext-link-type='doi' href='https://doi.org/10.1140/epjb/e2010-10565-2'>10.1140/epjb/e2010-10565-2</ext-link>

[23] N. K. Voulgarakis, “The effect of thermal fluctuations on Holstein polaron dynamics in electric Field”, Physica B, 519 (2017), 15–20 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.physb.2017.04.030'>10.1016/j.physb.2017.04.030</ext-link>

[24] A. N. Korshunova, V. D. Lakhno, “Charge Transfer by Polarons in a Homogeneous Poly G/Poly C-Chain Subjected to a Constant Electric Field in Terms of the Peyrard-Bishop-Holstein Model”, Technical Physics, 65:9 (2020), 1467–1474 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/S1063784220090200'>10.1134/S1063784220090200</ext-link>

[25] T. Astakhova, G. Vinogradov, “New aspects of polaron dynamics in electric field”, Eur. Phys. J. B, 92 (2019), 247 <ext-link ext-link-type='doi' href='https://doi.org/10.1140/epjb/e2019-100339-y'>10.1140/epjb/e2019-100339-y</ext-link>

[26] Holstein T., “Studies of polaron motion: Part I. The molecular-crystal model”, Annals of Phys., 8 (1959), 325–342 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0003-4916(59)90002-8'>10.1016/0003-4916(59)90002-8</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0173.30404'>0173.30404</ext-link>

[27] Holstein T., “Studies of polaron motion: Part II. The “small” polaron”, Annals of Phys., 8 (1959), 343–389 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0003-4916(59)90003-X'>10.1016/0003-4916(59)90003-X</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0173.30404'>0173.30404</ext-link>

[28] A. N. Korshunova, V. D. Lakhno, “Simulation of the Stationary and Nonstationary Charge Transfer Conditions in a Uniform Holstein Chain Placed in Constant Electric Field”, Technical Physics, 63:9 (2018), 1270–1276 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/S1063784218090086'>10.1134/S1063784218090086</ext-link>

[29] V. D. Lakhno, N. S. Fialko, “Bloch oscillations in a homogeneous nucleotide chain”, JETP Lett., 79:10 (2004), 464–467 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/1.1780553'>10.1134/1.1780553</ext-link>