Quantitative assessment of the development of micromycete colony on the surfaces of polymers and polymer composites
Matematičeskaâ biologiâ i bioinformatika, Tome 16 (2021), pp. 367-379.

Voir la notice de l'article provenant de la source Math-Net.Ru

The need to ensure the possibility of widespread use of electronic and mobile health-saving technologies requires not only the formation of an appropriate information technology infrastructure and the development of effective algorithms for processing a large amount of personal information. Development of medical devices for recording physiological processes also involves the creation of innovative biologically compatible materials that allow sensors and medical sensors to work continuously in 24 $\times$ 7 mode. Taking into account the long-term positive experience of using large-capacity thermoplastics and elastomers in medical equipment, it seems promising to use the corresponding polymers as the main materials of wearable electronics for medical purposes. At the same time, to ensure the biological compatibility of the materials under discussion, it is necessary to minimize the possibility of the development of pathogenic microorganisms on surfaces in contact with living tissues. This type of pathogenic organisms (pathogens of a number of dangerous diseases – mycoses) includes some types of microscopic fungi – micromycetes (in particular, Aspergillus niger van Tiegem; Aspergillus terreus Thom; Penicillium cycopium Westling). The article examines the effect of surface modification by gas-phase fluorination on the nature and degree of development of a mixed colony of micromycetes on the surfaces of experimental samples made of several types of thermoplastics (polyvinyl chloride, polypropylene, low-density polyethylene, polyethylene terephthalate) and elastomers (butyl- and butadiene-nitrile rubbers, as well as ethylene, propylene and dicyclopentadiene copolymers). The nature and degree of development of colonies are quantitatively described using the original methodology developed earlier. The effect of fluorination on the nanotexture and chemical composition of the surface and near-surface layers of experimental samples was demonstrated using scanning electron microscopy (SEM) and IR Fourier spectroscopy (IRFS). The dynamics and efficiency of fluorination are described using a linearized hyperbolic model, the parameters of which are set by the least squares method.
@article{MBB_2021_16_a0,
     author = {E. A. Isaev and F. A. Doronin and A. G. Evdokimov and D. V. Pervukhin and Yu. V. Rudyak and G. O. Rytikov and V. V. Kornilov and V. G. Nazarov},
     title = {Quantitative assessment of the development of micromycete colony on the surfaces of polymers and polymer composites},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {367--379},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2021_16_a0/}
}
TY  - JOUR
AU  - E. A. Isaev
AU  - F. A. Doronin
AU  - A. G. Evdokimov
AU  - D. V. Pervukhin
AU  - Yu. V. Rudyak
AU  - G. O. Rytikov
AU  - V. V. Kornilov
AU  - V. G. Nazarov
TI  - Quantitative assessment of the development of micromycete colony on the surfaces of polymers and polymer composites
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2021
SP  - 367
EP  - 379
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2021_16_a0/
LA  - ru
ID  - MBB_2021_16_a0
ER  - 
%0 Journal Article
%A E. A. Isaev
%A F. A. Doronin
%A A. G. Evdokimov
%A D. V. Pervukhin
%A Yu. V. Rudyak
%A G. O. Rytikov
%A V. V. Kornilov
%A V. G. Nazarov
%T Quantitative assessment of the development of micromycete colony on the surfaces of polymers and polymer composites
%J Matematičeskaâ biologiâ i bioinformatika
%D 2021
%P 367-379
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2021_16_a0/
%G ru
%F MBB_2021_16_a0
E. A. Isaev; F. A. Doronin; A. G. Evdokimov; D. V. Pervukhin; Yu. V. Rudyak; G. O. Rytikov; V. V. Kornilov; V. G. Nazarov. Quantitative assessment of the development of micromycete colony on the surfaces of polymers and polymer composites. Matematičeskaâ biologiâ i bioinformatika, Tome 16 (2021), pp. 367-379. http://geodesic.mathdoc.fr/item/MBB_2021_16_a0/

[1] V. L. Andrushko, “Innovatsionnye servisy elektronnogo zdravookhraneniya”, Biznes v zakone. Ekonomiko-yuridicheskii zhurnal, 2008, no. 3, 275–277

[2] V. M. Levanov, “Ot telemeditsiny do elektronnogo zdravookhraneniya: evolyutsiya terminov”, Meditsinskii almanakh, 2012, no. 2, 16–19

[3] P. H. Vilela, J. J.P. C. Rodrigues, S. Kozlov, R. D.R. Righi, V. F. Rodrigues, “Looking at fog computing for e-health through the lens of deployment challenges and applications”, Sensors, 20:9 (2020), 2553 <ext-link ext-link-type='doi' href='https://doi.org/10.3390/s20092553'>10.3390/s20092553</ext-link>

[4] L. Minh Dang, M. J. Piran, D. Han, K. Min, H. Moon, “A survey on internet of things and cloud computing for healthcare”, Electronics (Switzerland), 8:7 (2019), 768

[5] L. R. Ferretto, E. A. Bellei, D. Biduski, C. R. Cervi, A. C.B. De Marchi, L. C.P. Bin, M. M. Moro, “A physical activity recommender system for patients with arterial hypertension”, IEEE Access, 8 (2020), 61656–61664 <ext-link ext-link-type='doi' href='https://doi.org/10.1109/ACCESS.2020.2983564'>10.1109/ACCESS.2020.2983564</ext-link>

[6] S. Yu. Ilin, V. V. Luchinin, “Intellektualnaya iskusstvennaya kozha epidermalnyi monitoring i korrektsiya bioob'ektov”, Nano- i mikrosistemnaya tekhnika, 19:8 (2017), 499–512

[7] S. Yu. Ilin, V. V. Luchinin, “Epidermalnye biointe-griruemye personifitsirovannye intellektualnye sensornye i korrektiruyuschie mikro- i nanosistemy”, Biotekhnosfera, 2017, no. 3 (51), 2–15

[8] A. A. Gostev, P. P. Laktionov, A. A. Karpenko, “Sovremennye poliuretany v serdechno-sosudistoi khirurgii”, Angiologiya i sosudistaya khirurgiya, 24:1 (2018), 29–38

[9] E. A. Isaev, D. V. Pervukhin, V. V. Kornilov, P. A. Tarasov, A. A. Grigorev, Yu. V. Rudyak, G. O. Rytikov, V. G. Nazarov, “Kolichestvennaya otsenka zavisimosti adgezii trombotsitov k ftorirovannomu polietilenu ot strukturnykh kharakteristik ego poverkhnosti”, Matematicheskaya biologiya i bioinformatika, 14:2 (2019), 420–429 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2019.14.420'>10.17537/2019.14.420</ext-link>

[10] E. N. Antonov, A. N. Konovalov, A. G. Orlova, V. K. Popov, A. V. Popova, N. M. Shakhova, V. N. Bagratashvili, “Issledovanie biologicheskoi sovmestimosti poristykh polilaktidnykh matrits s pomoschyu opticheskoi kogerentnoi mikroskopii”, Almanakh klinicheskoi meditsiny, 2006, no. 12, 105

[11] V. Ya. Denisov, S. V. Luzgarev, P. A. Piven, A. S. Luzgarev, Yu. A. Sheveleva, “Mnogosloinye kompozitsionnye materialy novogo pokoleniya na osnove kremniiorganicheskikh polimerov i sopolimerov dlya shirokoi sfery primeneniya”, Sovremennye naukoemkie tekhnologii, 2009, no. 1, 13

[12] P. V. Afanasev, O. S. Bokhov, I. V. Mandrik, V. A. Startsev, “Kaple-struinaya tekhnologiya gibkoi pechatnoi elektroniki dlya izgotovleniya passivnykh elementov”, Nano- i mikrosistemnaya tekhnika, 19:8 (2017), 465–470

[13] E. A. Tsukanova, A. V. Suschenko, P. A. Popov, “Issledovanie biologicheskoi sovmestimosti alternativnykh preparatov metilakrilovogo polimera v kachestve materiala bazisov s'emnykh plastinochnykh protezov i slizistoi proteznogo lozha u patsientov s soputstvuyuschei khronicheskoi patologiei ZhKT”, Sistemnyi analiz i upravlenie v biomeditsinskikh sistemakh, 17:4 (2018), 854–865

[14] A. B. Gilman, T. S. Demina, P. S. Timashev, “Plazmokhimicheskoe modifitsirovanie poverkhnosti dlya regulirovaniya biosovmestimosti polimernykh materialov. Metodiki i ustanovki”, Perspektivnye materialy, 2019, no. 1, 5–19

[15] A. N. Dautova, V. V. Yanov, E. I. Alekseev, L. A. Zenitova, “Biodegradiruyuschie polimernye kompozitsionnye materialy s ispolzovaniem naturalnogo kauchuka”, Butlerovskie soobscheniya, 52:10 (2017), 56–73 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3791585'>3791585</ext-link>

[16] E. A. Nemets, V. A. Surguchenko, A. P. Pankina, S. T. Metelskii, V. I. Sevastyanov, “Sposoby regulirovaniya fiziko-khimicheskikh i biologicheskikh svoistv poverkhnosti plenochnykh obraztsov poli(oksibutirata-ko-oksivalerata)”, Fizika i khimiya obrabotki materialov, 2018, no. 6, 17–25

[17] A. B. Laptev, A. V. Golubev, D. M. Kireev, E. V. Nikolaev, “K voprosu biodestruktsii polimernykh materialov v prirodnykh sredakh (obzor)”, Trudy VIAM, 2019, no. 9 (81), 100–107

[18] V. G. Nazarov, V. P. Stolyarov, L. A. Evlampieva, A. V. Fokin, “Heterophase fluorination of polymers”, Doklady Physical Chemistry, 350:4–6 (1996), 268–270

[19] E. Kh. Karimov, R. R. Daminev, I. I. Safiullina, Yu. I. Puzin, E. M. Movsumzade, “Sravnitelnye svoistva i prevrascheniya polimerov akrilonitrila, stirola, butadiena i ikh sopolimerov po antimikrobnoi aktivnosti”, Promyshlennoe proizvodstvo i ispolzovanie elastomerov, 2019, no. 4, 12–16

[20] V. K. Plakunov, A. V. Gannesen, S. V. Martyanov, M. V. Zhurina, “Biokorroziya sinteticheskikh plastmass: mekhanizmy degradatsii i sposoby zaschity”, Mikrobiologiya, 89:6 (2020), 631–645 <ext-link ext-link-type='doi' href='https://doi.org/10.31857/S0026365620060142'>10.31857/S0026365620060142</ext-link>

[21] V. G. Nazarov, “Composition and dimensions of the surface and transition layers in modified polymers”, Polymer Science. Series B, 39:3–4 (1997), 142–145

[22] D. Ruch, C. Becker, A. Riche, S. Etienne, J. Bour, “Fotookislenie okrashennogo butadien-stirolnogo i naturalnogo kauchukov”, Vysokomolekulyarnye soedineniya. Seriya A, 50:6 (2008), 1081–1085

[23] D. V. Kuznetsov, I. A. Ilinykh, V. V. Cherdyntsev, D. S. Muratov, N. V. Shatrova, I. N. Burmistrov, “Issledovanie ustoichivosti polimernykh kompozitov na osnove polipropilena k ultrafioletovomu izlucheniyu”, Sovremennye problemy nauki i obrazovaniya, 2012, no. 6, 33 <ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1289.60091'>1289.60091</ext-link>

[24] V. I. Zheivot, E. M. Moroz, V. I. Zaikovskii, M. E. Shalaeva, V. V. Malakhov, A. A. Tsikoza, “Vliyanie nanotekstury na adsorbtsionnye i gazokhromatograficheskie svoistva uglerodnykh adsorbentov”, Doklady Akademii nauk, 343:6 (1995), 781–784

[25] S. A. Semenov, K. Z. Gumargalieva, G. E. Zaikov, “Kharakteristiki protsessov i osobennosti povrezhdeniya materialov tekhniki mikroorganizmami v usloviyakh ekspluatatsii”, Vestnik MITKhT im. M.V.Lomonosova, 3:2 (2008), 1–21

[26] V. I. Sevast'yanov, E. A. Nemets, V. P. Stolyarov, V. A. Baranov, N. N. Bozhko, V. G. Nazarov, “Comparative study of the influence of polyethylene film surface modification on interaction with blood components”, Inorganic Materials: Applied Research, 2:2 (2011), 146–152 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/S2075113311020183'>10.1134/S2075113311020183</ext-link>

[27] G. N. Petrova, D. N. Perfilova, T. V. Rumyantseva, “Vliyanie poverkhnostnogo ftorirovaniya termoelastoplastov na ikh abrazivostoikost”, Kauchuk i rezina, 2015, no. 4, 4–7

[28] N. D. Spencer, Tailoring Surfaces: Modifying Surface Composition and Structure for Applications in Tribology, Biology and Catalysis, IISc Centenary Lecture Series, 5, World Scientific, 2011

[29] V. G. Nazarov, A. V. Tarasov, “Analysis of surface modification effect of polymer membranes on the interaction with blood components and microorganisms”, Procedia Engineering Cep. “Euromembrane Conference 2012”, 2012, 972–975

[30] A. Urakov, N. Urakova, “Rheology and physical-chemical characteristics of the solutions of the medicines”, Journal of Physics: Conference Series, 602:1 (2015), 012043 <ext-link ext-link-type='doi' href='https://doi.org/10.1088/1742-6596/602/1/012043'>10.1088/1742-6596/602/1/012043</ext-link>

[31] V. G. Nazarov, Poverkhnostnaya modifikatsiya polimerov, MGUP, M., 2008, 474 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2906160'>2906160</ext-link>

[32] O. S. Andrienko, Prakticheskie metody vvedeniya ftora v organicheskie soedineniya, Izdatelstvo nauchno-tekhnicheskoi literatury, Tomsk, 2010, 175 pp.

[33] A. L. Volynskii, N. F. Bakeev, Rol poverkhnostnykh yavlenii v strukturno-mekhanicheskom povedenii tverdykh polimerov, Fizmatlit, M., 2014, 534 pp.

[34] A. V. Dedov, V. P. Stolyarov, V. A. Baranov, E. B. Bablyuk, V. G. Nazarov, “Issledovanie uslovii obrazovaniya sloya iz ftorsoderzhaschikh ingredientov na poverkhnosti reziny”, Kauchuk i rezina, 2004, no. 6, 23

[35] A. P. Kharitonov, “Direct fluorination of polymers-from fundamental research to industrial applications”, Progress in Organic Coatings, 61:2–4 (2008), 192–204 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.porgcoat.2007.09.027'>10.1016/j.porgcoat.2007.09.027</ext-link>

[36] V. G. Nazarov, V. P. Stolyarov, L. A. Evlampieva, V. A. Baranov, M. V. Gagarin, “Modelirovanie protsessa sulfirovaniya i struktury poverkhnostnogo sloya polietilena”, Vysokomolekulyarnye soedineniya. Seriya A, 51:3 (2009), 478–488

[37] L. B. Boinovich, A. M. Emelyanenko, “Hydrophobic materials and coatings: principles of design, properties and applications”, Russian Chemical Reviews, 77:7 (2008), 583–600 <ext-link ext-link-type='doi' href='https://doi.org/10.1070/RC2008v077n07ABEH003775'>10.1070/RC2008v077n07ABEH003775</ext-link>

[38] V. I. Sevast'yanov, E. A. Nemets, V. P. Stolyarov, V. A. Baranov, N. N. Bozhko, V. G. Nazarov, “Comparative study of the influence of polyethylene film sur-face modification on interaction with blood components”, Inorganic Materials: Applied Research, 2:2 (2011), 146–152 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/S2075113311020183'>10.1134/S2075113311020183</ext-link>

[39] V. G. Nazarov, F. A. Doronin, A. G. Evdokimov, G. O. Rytikov, V. P. Stolyarov, “Reguliruemoe oksiftorirovaniem izmenenie smachivaemosti poverkhnosti polimernykh plenok”, Kolloidnyi zhurnal, 81:2 (2019), 212–223 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/S0023291219020113'>10.1134/S0023291219020113</ext-link>

[40] S. A. Semenov, K. Z. Gumargalieva, G. E. Zaikov, “Kharakteristiki protsessov i osobennosti povrezhdeniya materialov tekhniki mikroorganizmami v usloviyakh ekspluatatsii”, Vestnik MITKhT im. M.V.Lomonosova, 3:2 (2008), 1–21

[41] V. M. Elinson, E. V. Rusanova, I. A. Vasilenko, A. N. Lyamin, L. N. Kostyuchenko, “Aktivnost antimikrobnykh nanostrukturirovannykh barernykh sloev na osnove polietilentereftalata v otnoshenii klinicheskikh shtammov mikroorganizmov u bolnykh gastroenterologicheskogo profilya”, Eksperimentalnaya i klinicheskaya gastroenterologiya, 2015, no. 8 (120), 85–89

[42] I. G. Kalinina, K. Z. Gumargalieva, S. A. Semenov, “Biokorroziya plastifitsirovannogo polivinilkhlorida pod vozdeistviem mikroskopicheskogo griba Aspergillusniger”, Korroziya: materialy i zaschita, 2017, no. 2, 37–40

[43] E. S. Kopachev, S. A. Nozdrachev, V. N. Petrushin, Yu. V. Rudyak, G. O. Rytikov, V. G. Nazarov, “Kompleksnyi metod kharakterizatsii izobrazhenii poverkhnostei polimernykh kompozitnykh materialov”, Fizicheskaya mezomekhanika, 18:6 (2015), 98–110

[44] V. N. Petrushin, Y. V. Rudyak, G. O. Rytikov, “The holistic method of the surface structure characterization”, 14th International Baltic Conference on Atomic Layer Deposition, BALD 2016, Proceedings, 2016, 15–19 <ext-link ext-link-type='doi' href='https://doi.org/10.1109/BALD.2016.7886525'>10.1109/BALD.2016.7886525</ext-link>

[45] V. N. Petrushin, Yu. V. Rudyak, G. O. Rytikov, V. G. Nazarov, “Postroenie bikriterialno dostovernykh empiricheskikh raspredelenii yarkostei pikselei pri kolichestvennom analize SEM-izobrazhenii”, Izvestiya vysshikh uchebnykh zavedenii. Problemy poligrafii i izdatelskogo dela, 2017, no. 5, 3–14

[46] S. A. Drozdov, V. G. Nazarov, S. A. Nozdrachev, Yu. V. Rudyak, G. O. Rytikov, “The polymer composites' morphological structure”, Simulation, 8:1 (2017), 137

[47] S. A. Drozdov, V. G. Nazarov, S. A. Nozdrachev, Yu. V. Rudyak, G. O. Rytikov, “The polymer composites' morphological structure simulation”, Nanosystems: Physics, Chemistry, Mathematics, 8:1 (2017), 137–145 <ext-link ext-link-type='doi' href='https://doi.org/10.17586/2220-8054-2017-8-1-137-145'>10.17586/2220-8054-2017-8-1-137-145</ext-link>

[48] V. N. Petrushin, Yu. V. Rudyak, G. O. Rytikov, “Reprezentativnost statisticheskoi vyborki pri kolichestvennom analize izobrazhenii”, Cloud of Science, 5:2 (2018), 325–340