Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2021_16_2_a9, author = {E. E. Giricheva}, title = {Coexistence of the three trophic levels in a model with intraguild predation and intraspecific competition of prey}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {394--410}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2021_16_2_a9/} }
TY - JOUR AU - E. E. Giricheva TI - Coexistence of the three trophic levels in a model with intraguild predation and intraspecific competition of prey JO - Matematičeskaâ biologiâ i bioinformatika PY - 2021 SP - 394 EP - 410 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2021_16_2_a9/ LA - ru ID - MBB_2021_16_2_a9 ER -
%0 Journal Article %A E. E. Giricheva %T Coexistence of the three trophic levels in a model with intraguild predation and intraspecific competition of prey %J Matematičeskaâ biologiâ i bioinformatika %D 2021 %P 394-410 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2021_16_2_a9/ %G ru %F MBB_2021_16_2_a9
E. E. Giricheva. Coexistence of the three trophic levels in a model with intraguild predation and intraspecific competition of prey. Matematičeskaâ biologiâ i bioinformatika, Tome 16 (2021) no. 2, pp. 394-410. http://geodesic.mathdoc.fr/item/MBB_2021_16_2_a9/
[1] R. M. May, “Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos”, Science, 186:4164 (1974), 645–647 | DOI
[2] M. P. Hassel, The dynamics of arthropod predator-prey systems, Princeton University Press, Princeton, 1978 | MR | Zbl
[3] R. M. Anderson, R. M. May, “Population biology of infectious diseases. Part I”, Nature, 280 (1979), 361–367 | DOI
[4] P. Turchin, Complex population dynamics: a theoretical/empirical synthesis, Princeton University Press, Princeton, 2003 | MR | Zbl
[5] H. I. Freedman, P. Waltman, “Persistence in models of three interacting predator-prey populations”, Math. Bioscience, 68:2 (1984), 213–231 | DOI | MR | Zbl
[6] A. Hastings, T. Powell, “Chaos in a three-species food chain”, Ecology, 72:3 (1991), 896–903 | DOI
[7] S. B. Hsu, S. P. Hubbell, P. Waltman, “A contribution to the theory of competing predators”, Ecol. Monography, 48:3 (1978), 337–349 | DOI | MR
[8] N. Krikorian, “The Volterra model for three species predator-prey systems: boundedness and stability”, J. Math. Biol, 7:2 (1979), 117–132 | DOI | MR | Zbl
[9] A. D. Bazykin, Matematichesakaya biofizika vzaimodeistvuyuschikh populyatsii, Nauka, M., 1985, 165 pp.
[10] Sze-Bi Hsu, Shigui Ruan, Ting-Hui Yang, “Analysis of three species Lotka-Volterra food web models with omnivory”, Journal of Mathematical Analysis and Applications, 426:2 (2015), 659–687 | DOI | MR | Zbl
[11] R. D. Holt, G. A. Polis, “A Theoretical Framework for Intraguild Predation”, American Naturalist, 149 (1997), 745–764 | DOI
[12] T. Namba, K. Tanabe, “Omnivory and stability of food webs”, Ecological Complexity, 5 (2008), 73–85 | DOI
[13] Y. Kang, L. Wedekin, “Dynamics of a intraguild predation model with generalist or specialist predator”, Journal of Mathematical Biology, 67:5 (2013), 1227–1259 | DOI | MR | Zbl
[14] K. Tanabe, T. Namba, “Omnivory Creates Chaos in Simple Food Web Models”, Ecology, 86:12 (2005), 3411–3414 | DOI
[15] P. Abrams, S. R. Fung, “Prey persistence and abundance in systems with intraguild predation and type-2 functional responses”, Journal of Theoretical Biology, 264:3 (2010), 1033–1042 | DOI | MR | Zbl
[16] L. D.J. Kuijper, B. W. Kooi, C. Zonneveld, Kooijman S. A.L. M., “Omnivory and food web dynamics”, Ecological Modelling, 163 (2003), 19–32 | DOI
[17] V. Křivan, S. Diehl, “Adaptive omnivory and species coexistence in tri-trophic food webs”, Theor. Popul. Biol, 67 (2005), 85–99 | DOI
[18] J. Vandermeer, “Omnivory and the stability of food webs”, Journal of Theoretical Biology, 238 (2006), 497–504 | DOI | MR | Zbl
[19] Zhang Guohong, Wang Xiaoli, “Extinction and coexistence of species for a diffusive intraguild predation model with B-D functional response”, Discrete and Continuous Dynamical Systems B, 23:9 (2018), 3755–3786 | DOI | MR | Zbl
[20] A. Sentis, J. L. Hemptinne, J. Brodeur, “How functional response and productivity modulate intraguild predation”, Ecosphere, 4:4 (2013), 46 | DOI
[21] C. S. Holling, “The functional response of predators to prey density and its role in mimicry and population regulation”, Mem. Entomol. Soc. Can, 45 (1965), 5–60 | DOI
[22] D. Sen, S. Ghorai, M. Banerjee, “Complex dynamics of a three species prey-predator model with intraguild predation”, Ecological Complexity, 34 (2018), 9–22 | DOI | Zbl
[23] Křivan V., Eisner J., “The effect of the Holling type II functional response on apparent competition”, Theoretical Population Biology, 70:4 (2006), 421–430 | DOI
[24] S. D. Mylius, K. Klumpers, A. M. de Roos, L. Persson, “Impact of intraguild predation and stage structure on simple communities along a productivity gradient”, American Naturalist, 158:3 (2001), 259–276 | DOI
[25] I. Loreto-Hernández, “Existence of a Limit Cycle in an Intraguild Food Web Model with Holling Type II and Logistic Growth for the Common Prey”, Applied Mathematics, 8 (2017), 358–376 | DOI
[26] K. L. Denman, M. A. Pena, “The response of two coupled one-dimensional mixed layer/planktonic ecosystem models to climate change in the NE subarctic Pacific Ocean”, Deep Sea Research Part II: Topical Studies in Oceanography, 49:24-25 (2002), 5739–5757 | DOI
[27] A. Morozov, E. Arashkevich, A. Nikishina, K. Solovyev, “Nutrient-rich plankton community stabilized via predator-prey interactions: revisiting the role of vertical heterogeneity”, Math. Med. Biol, 28 (2011), 185–215 | DOI | MR | Zbl
[28] A. M. Edwards, J. Brindley, “Zooplankton mortality and the dynamical behaviour of plankton population models”, Bull. Math. Biol, 61 (1999), 303–339 | DOI | Zbl
[29] T. Kiørboe, A Mechanistic Approach to Plankton Ecology, Princeton University Press, Princeton, 2008
[30] E. Saiz, A. Calbet, “Copepod feeding in the ocean: scaling patterns, composition of their diet and the bias of estimates due to microzooplankton grazing during incubations”, Hydrobiologia, 666:1 (2011), 181–196 | DOI
[31] P. J.S. Franks, “Phytoplankton blooms in a fluctuating environment: the roles of plankton response time scales and grazing”, J. Plankton Res, 23 (2001), 1433–1441 | DOI
[32] B. Hansen, K. S. Tande, U. C. Berggreen, “On the trophic fate of Phaeocystis pouchetii (Hariot). III. Functional responses in grazing demonstrated on juvenile stages of Calanus finmarchicus (Copepoda) fed diatoms and Phaeocystis”, J. Plankton Res, 12 (1990), 1173–1187 | DOI
[33] R. J. Hall, “Intraguild Predation in the Presence of a Shared Natural Enemy”, Ecology, 92:2 (2011), 352–361 | DOI
[34] C. M. Hickerson, “Edge effects and intraguild predation in native and introduced centipedes: evidence from the field and from laboratory microcosms”, Oecologia, 146:1 (2005), 110–119 | DOI
[35] S. Diehl, M. Feissel, “Effects of enrichment on three-level food chains with omnivory”, Am. Nat., 155 (2000), 200–218 | DOI