Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2021_16_2_a4, author = {Sangeeta Saha and Guruprasad Samanta}, title = {Dynamics of an epidemic model under the influence of environmental stress}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {201--243}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2021_16_2_a4/} }
TY - JOUR AU - Sangeeta Saha AU - Guruprasad Samanta TI - Dynamics of an epidemic model under the influence of environmental stress JO - Matematičeskaâ biologiâ i bioinformatika PY - 2021 SP - 201 EP - 243 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2021_16_2_a4/ LA - en ID - MBB_2021_16_2_a4 ER -
Sangeeta Saha; Guruprasad Samanta. Dynamics of an epidemic model under the influence of environmental stress. Matematičeskaâ biologiâ i bioinformatika, Tome 16 (2021) no. 2, pp. 201-243. http://geodesic.mathdoc.fr/item/MBB_2021_16_2_a4/
[1] J. C. Holmes, “Parasites as threats to biodiversity in shrinking ecosystems”, Biodivers. Conserv., 5 (1996), 975–983 | DOI
[2] M. C. Rigby, More Y., “Life-history trade-offs and immune defenses”, Evolutionary Biology of Host-Parasite Relationships: Theory Meets Reality, eds. Poulin R., S. Morand, A. Skorping, Elsevier Science, Amsterdam, 2000, 129–142
[3] M. A. Beck, O. A. Levander, “Host nutritional status and its effect on a viral pathogen”, J. Infect. Dis., 182 (2000), 93–96 | DOI
[4] R. A. Khan, “Parasitism in marine fish after chronic exposure to petroleum hydrocarbons in the laboratory and to the Exxon Valdez oil spill”, Bull. Environ. Contam. Toxicol., 44 (1990), 759–763 | DOI
[5] C. D. Harvell, K. Kim, J. M. Burkholder, R. R. Colwell, P. R. Epstein, D. J. Grimes, E. E. Hofmann, E. K. Lipp, A. D. Osterhaus, R. M. Overstreet et al, “Emerging marine diseases-climate links and anthropogenic factors”, Science, 285 (1999), 1505–1510 | DOI
[6] M. E. Scott, “The impact of infection and disease on animal populations: implications for conservation biology”, Conserv. Biol., 2 (1980), 40–56 | DOI
[7] S. Blanford, Thomas M.B, C. Pugh, J. K. Pell, “Temperature checks the Red Queen? Resistance and virulence in a fluctuating environment”, Ecol. Lett., 6 (2003), 2–5 | DOI
[8] Dubey B., J. Biol. Syst., 18:03 (2010), A model for the effect of pollutant on human population dependent on a resource with environmental and health policy | DOI | MR
[9] J. Shukla, A. Agrawal, B. Dubey, P. Sinha, “Existence and survival of two competing species in a polluted environment: a mathematical model”, J. Biol. Syst., 9:02 (2001), 89–103 | DOI
[10] J. Shukla, A. Misra, P. Chandra, “Mathematical modelling of the survival of a biological species in polluted water bodies”, Differ. Equ. Dyn. Syst., 15 (2007), 209–230 | MR | Zbl
[11] P. K. Mandal, “Dioxin: a review of its environmental effects and its aryl hydrocarbon receptor biology”, J. Comp. Physiol. B, 175:4 (2005), 221–230 | DOI
[12] Brook R., “Cardiovascular effects of air pollution”, Clin. Sci., 115 (2008), 175–187 | DOI
[13] A. Nawahda, K. Yamashita, T. Ohara, J. Kurokawa, K. Yamaji, “Evaluation of premature mortality caused by exposure to PM$_{2.5}$ and ozone in East Asia: 2000, 2005, 2020”, Water Air Soil Pollut., 223:6 (2012), 3445–3459 | DOI
[14] Pope C. A. 3rd, Burnett R. T., Thun M. J., Calle E. E., Krewski D., Ito K., Thurston G. D., “Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution”, JAMA, 287:9 (2002), 1132–1141 | DOI
[15] Javan, S., Rahdar, S., Miri, M., B. Djahed, H. Kazemian, Y. Fakhri, H. Eslami, R. A. Fallahzadeh, A. Gholizadeh, M. Taghavi, “Modeling of the PM10 pollutant health effects in a semi-arid area: a case study in Zabol, Iran”, Model. Earth Syst. Environ., 7 (2021), 455–463 | DOI
[16] R. J. Laumbach, H. M. Kipen, “Respiratory health effects of air pollution: update on biomass smoke and traffic pollution”, J. Allergy Clin. Immunol., 129:1 (2012), 3–11 | DOI
[17] Salvi S., Paediatr. Respir. Rev., 8:4 (2007), Health effects of ambient air pollution in children | DOI
[18] L. M. Schell, M. V. Gallo, M. Denham, J. Ravenscroft, “Effects of pollution on human growth and development: an introduction”, J. Physiol. Anthropol., 25:1 (2006), 103–112 | DOI
[19] L. van Rossem, S. L. Rifas-Shiman, S. J. Melly, I. Kloog, H. Luttmann-Gibson, A. Zanobetti, B. A. Coull, J. D. Schwartz, M. A. Mittleman, E. Oken et al, “Prenatal air pollution exposure and newborn blood pressure”, Environ. Health Perspect., 123:4 (2015), 353–359 | DOI
[20] M. R. Schwarzman, M. P. Wilson, “New science for chemicals policy”, Science, 326:5956 (2009), 1065 | DOI
[21] S. D. Richardson, “Disinfection by-products and other emerging contaminants in drinking water”, Trends Anal. Chem., 22:10 (2003), 666–684 | DOI
[22] N. Hamidin, Yu, Q. J., Connell, D. W., “Human health risk assessment of chlorinated disinfection by-products in drinking water using a probabilistic approach”, Water Res., 42:13 (2008), 3263–3274 | DOI
[23] A. S. Al-Mikhlafi, “Groundwater quality of yemen volcanic terrain and their geological and geochemical controls”, Arab. J. Geosci., 3:2 (2010), 193–205 | DOI
[24] S. A. Ahmad, M. Sayed, S. Barua, M. H. Khan, M. H. Faruquee, A. Jalil, S. A. Hadi, H. K. Talukder, “Arsenic in drinking water and pregnancy outcomes”, Environ. Health Perspect., 109:6 (2001), 629 | DOI
[25] K. Waller, S. H. Swan, G. DeLorenze, B. Hopkins, “Trihalomethanes in drinking water and spontaneous abortion”, Epidemiology, 9:2 (1998), 134–140 | DOI
[26] A. C. Collie, “Pharmaceutical contaminants in potable water: potential concerns for pregnant women and children”, EcoHealth, 4:2 (2007), 164–171 | DOI
[27] I. Hertz-Picciotto, H. Y. Park, M. Dostal, A. Kocan, T. Trnovec, R. Sram, “Prenatal exposures to persistent and non-persistent organic compounds and effects on immune system development”, Basic Clin. Pharmacol. Toxicol., 102:2 (2008), 146–154 | DOI
[28] P. Grandjean, D. Bellinger, A. Bergman, S. Cordier, G. Davey-Smith, B. Eskenazi, D. Gee, K. Gray, M. Hanson, P. van den Hazel et al, “The faroes statement: human health effects of developmental exposure to chemicals in our environment”, Basic Clin. Pharmacol. Toxicol., 102:2 (2008), 73–75 | DOI
[29] R. Raqib, S. Ahmed, R. Sultana, Y. Wagatsuma, D. Mondal, A. M. Hoque, B. Nermell, M. Yunus, S. Roy, L. A. Persson et al, “Effects of in utero arsenic exposure on child immunity and morbidity in rural Bangladesh”, Toxicol. Lett., 185:3 (2009), 197–202 | DOI
[30] A. J. McMichael, R. E. Woodruff, S. Hales, “Climate change and human health: present and future risks”, Lancet, 367:9513 (2006), 859–869 | DOI
[31] J. A. Patz, T. K. Graczyk, N. Geller, A. Y. Vittor, “Effects of environmental change on emerging parasitic diseases”, Int. J. Parasitol., 30:12 (2000), 1395–1405 | DOI
[32] E. K. Lipp, A. Huq, R. R. Colwell, “Effects of global climate on infectious disease: the cholera model”, Clin. Microbiol. Rev., 15:4 (2002), 757–770 | DOI
[33] K. Dolschak, K. Gartner, T. W. Berger, “The impact of rising temperatures on water balance and phenology of European beech (Fagus sylvatica L.) stands”, Model. Earth Syst. Environ., 5 (2019), 1347–1363 | DOI
[34] E. Stemn, B. Kumi-Boateng, “Modelling of land surface temperature changes as determinant of urban heat island and risk of heat-related conditions in the Wassa West Mining Area of Ghana”, Model. Earth Syst. Environ., 6 (2020), 1727–1740 | DOI
[35] S. Ayub, G. Akhter, A. Ashraf, M. Iqbal, “Snow and glacier melt runoff simulation under variable altitudes and climate scenarios in Gilgit River Basin, Karakoram region”, Model. Earth Syst. Environ., 6 (2020), 1607–1618 | DOI
[36] S. Devi, R. P. Mishra, “A mathematical model to see the effects of increasing environmental temperature on plant-pollinator interactions”, Model. Earth Syst. Environ., 6 (2020), 1315–1329 | DOI | MR
[37] A. N. Traore, K. Mulaudzi, G. J. Chari, S. H. Foord, L. S. Mudau, T. G. Barnard, N. Potgieter, “The impact of human activities on microbial quality of rivers in the Vhembe District, South Africa”, Int. J. Environ. Res. Public Health., 13:8 (2016), 817 | DOI
[38] P. Roumagnac, F. X. Weill, C. Dolecek, S. Baker, S. Brisse, N. T. Chinh, T. A. Le, C. J. Acosta, J. Farrar, G. Dougan et al, “Evolutionary history of Salmonella typhi”, Science, 314:5803 (2006), 1301–1304 | DOI
[39] M. M. Riggs, A. K. Sethi, T. F. Zabarsky, E. C. Eckstein, R. L. Jump, C. J. Donskey, “Asymptomatic Carriers Are a Potential Source for Transmission of Epidemic and Nonepidemic Clostridium difficile Strains among Long-Term Care Facility Residents”, Clinical Infectious Diseases, 45:8 (2007), 992–998 | DOI
[40] K. D. Lafferty, R. D. Holt, How should environmental stress affect the population dynamics of disease?, Ecol. Lett., 6:7 (2003), 654–664 | DOI
[41] J. K. Hale, Theory of functional Differential Equations, Springer-Verlag, Heidelberg, 1977 | DOI | MR | Zbl
[42] P. Van den Driessche, J. Watmough, “Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission”, Mathematical Biosciences, 180:1 (2002), 29–48 | DOI | MR | Zbl
[43] L. Arriola, J. Hyman, Lecture notes on forward and adjoint sensitivity analysis with applications in Dynamical Systems, Linear Algebra and Optimisation, Mathematical and Theoretical Biology Institute, 2005
[44] Castillo-Chavez C., S. Blower, P. van den Driessche, D. Kirschner, Yakubu A. A. (eds., Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods, and Theory, The IMA Volumes in Mathematics and its Applications, 126, )Springer, 2002 | DOI | MR | Zbl
[45] LaSalle J., The stability of dynamical systems, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1976 | DOI | Zbl
[46] Castillo-Chavez C., Song B., “Dynamical models of tuberculosis and their applications”, Math. Biosci. Eng., 1 (2004), 361–404 | DOI | MR | Zbl
[47] S. Saha, G. P. Samanta, “Modelling and optimal control of HIV/AIDS prevention through PrEP and limited treatment”, Physica A: Statistical Mechanics and Its Applications, 516 (2019), 280–307 | DOI | MR | Zbl
[48] S. Saha, G. P. Samanta, “Dynamics of an epidemic model with impact of toxins”, Physica A: Statistical Mechanics and Its Applications, 527 (2019), 121152 | DOI | MR
[49] S. Saha, G. P. Samanta, J. J. Nieto, “Epidemic model of COVID-19 outbreak by inducing behavioural response in population”, Nonlinear Dyn., 102 (2020), 455–487 | DOI | Zbl
[50] H. Gaff, E. Schaefer, “Optimal control applied to vaccination and treatment strategies for various epidemiological models”, Mathematical Biosciences and Engineering, 6:3 (2009), 469–492 | DOI | MR | Zbl
[51] S. Kassa, A. Ouhinou, “The impact of self-protective measures in the optimal interventions for controlling infectious diseases of human population”, Journal of Mathematical Biology, 70:1–2 (2015), 213–236 | DOI | MR | Zbl
[52] H. Joshi, S. Lenhart, M. Li, L. Wang, “Optimal control methods applied to disease models”, Contemporary Mathematics, 410, 2006, 187–208 | DOI | MR
[53] Behncke H., Optimal Control Applications and Methods, 21:6 (2000), Optimal control of deterministic epidemics | DOI | MR | Zbl
[54] Castilho C., “Optimal control of an epidemic through educational campaigns”, Electronic Journal of Differential Equations, 125 (2006), 1–11 | MR
[55] S. D. Hove-Musekwa, F. Nyabadza, C. Chiyaka, P. Das, A. Tripathi, Z. Mukandavire, “Modelling and analysis of the effects of malnutrition in the spread of cholera”, Math. Comput. Model., 53:9 (2011), 1583–1595 | DOI | MR | Zbl
[56] R. Vardavas, S. Blower, The emergence of HIV transmitted resistance in Botswana: when will the WHO detection threshold be exceeded?, PLoS ONE, 2:1 (2007), e152 | DOI
[57] D. Donnell, J. M. Baeten, J. Kiarie, K. K. Thomas, W. Stevens, C. R. Cohen, J. McIntyre, J. R. Lingappa, C. Celum, “Heterosexual HIV-1 transmission after initiation of antiretroviral therapy: a prospective cohort analysis”, Lancet, 375 (2010), 2092–2098 | DOI
[58] O. Collins, K. Govinder, “Incorporating heterogeneity into the transmission dynamics of a waterborne disease model”, J. Theor. Biol., 356 (2014), 133–143 | DOI | MR | Zbl
[59] J. H. Tien, D. J. Earn, “Multiple transmission pathways and disease dynamics in a waterborne pathogen model”, Bull. Math. Biol., 72:6 (2010), 1506–1533 | DOI | MR | Zbl
[60] Kirk D., Optimal control theory: an introduction, Dover Publications, 2012
[61] E. Coddington, N. Levinson, Theory of ordinary differential equations, Tata McGraw-Hill Education, 1955 | MR
[62] W. Fleming, R. Rishel, Deterministic and stochastic optimal control, Applications of Mathematics, 1, Springer, New York, 1975 | DOI | MR | Zbl
[63] Pontryagin L., Mathematical theory of optimal processes, CRC Press, 1987