Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2021_16_2_a3, author = {K. K. Loginov and N. V. Pertsev}, title = {Direct statistical modeling of spread of epidemic based on a stage-dependent stochastic model}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {169--200}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2021_16_2_a3/} }
TY - JOUR AU - K. K. Loginov AU - N. V. Pertsev TI - Direct statistical modeling of spread of epidemic based on a stage-dependent stochastic model JO - Matematičeskaâ biologiâ i bioinformatika PY - 2021 SP - 169 EP - 200 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2021_16_2_a3/ LA - ru ID - MBB_2021_16_2_a3 ER -
%0 Journal Article %A K. K. Loginov %A N. V. Pertsev %T Direct statistical modeling of spread of epidemic based on a stage-dependent stochastic model %J Matematičeskaâ biologiâ i bioinformatika %D 2021 %P 169-200 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2021_16_2_a3/ %G ru %F MBB_2021_16_2_a3
K. K. Loginov; N. V. Pertsev. Direct statistical modeling of spread of epidemic based on a stage-dependent stochastic model. Matematičeskaâ biologiâ i bioinformatika, Tome 16 (2021) no. 2, pp. 169-200. http://geodesic.mathdoc.fr/item/MBB_2021_16_2_a3/
[1] D. J. Daley, J. Gani, Epidemic Modelling: An Introduction, Cambridge Studies in Mathematical Biology, 15, Cambridge University press, 1999, 213 pp. | MR | Zbl
[2] Roy M. Anderson, Robert M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, 1991, 784 pp.
[3] B. T. Grenfell, O. N. Bjornstad, B. F. Finkenstadt, “Dynamics of measles epidemics: scaling noise, determinism and predictability with the TSIR model”, Ecological Monographs, 72:2 (2002), 185–202 | DOI
[4] S. Akhtar, T. E. Carpenter, S. K. Rathi, “A chain-binomial model for intra-household spread of Mycobacterium tuberculosis in a low socio-economic setting in Pakistan”, Epidemiol Infect., 135:1 (2007), 27–33 | DOI
[5] A. V. Mastikhin, “Final distribution for Gani epidemic Markov processes”, Mathematical Notes, 82 (2007), 787–797 | DOI | MR | Zbl
[6] P. M.A. Sloot, S. V. Ivanov, A. V. Boukhanovsky, D. A.M. C. Van De Vijver, C. A.B. Boucher, “Stochastic simulation of HIV population dynamics through complex network modeling”, International Journal of Computer Mathematics, 85:8 (2008), 1175–1187 | DOI | MR | Zbl
[7] N. V. Pertsev, V. N. Leonenko, “Stochastic individual-based model of spreadof tuberculosis”, Russ. J. Numer. Anal. Math. Modelling, 24:4 (2009), 341–360 | DOI | MR | Zbl
[8] Nishiura H., “Real-time forecasting of an epidemic using a discrete time stochastic model: a case study of pandemic influenza (H1N1–2009)”, Biomed. Eng. Online, 10:15 (2011) | DOI
[9] Y. Yuan, J. Belair, “Threshold dynamics in an SEIRS model with latency and temporary immunity”, J. Math. Biol, 69 (2014), 875–904 | DOI | MR | Zbl
[10] Vlad A.I., Sannikova T.E., Romanyukha A.A., “Modelirovanie rasprostraneniya respiratornykh virusnykh infektsii v gorode: multiagentnyi podkhod”, Matematicheskaya biologiya i bioinformatika, 15:2 (2020), 338–356 | DOI
[11] Krivorotko O.I., Kabanikhin S.I., Zyatkov N.Yu., Prikhodko A., Prokhoshin N., Shishlenin M.A., “Matematicheskoe modelirovanie i prognozirovanie COVID-19 v Moskve i Novosibirskoi oblasti”, Sibirskii zhurnal vychislitelnoi matematiki, 2020, no. 4, 395–414 | DOI
[12] M. Maleki, M. R. Mahmoudi, M. H. Heydari, Kim-Hung Pho, “Modeling and forecasting the spread and death rate of coronavirus (COVID-19) in the world using time series models”, Chaos, Solitons and Fractals, 140 (2020), 110151 | DOI | MR | Zbl
[13] R. C. Das, “Forecasting incidences of COVID-19 using Box-Jenkins method for the period July 12-Septembert 11, 2020: A study on highly affected countries”, Chaos, Solitons and Fractals, 140 (2020), 110248 | DOI | MR
[14] Feroze N., “Forecasting the patterns of COVID-19 and causal impacts of lockdown in top five affected countries using Bayesian Structural Time Series Models”, Chaos, Solitons and Fractals, 140 (2020), 110196 | DOI | MR
[15] X. Fu, Q. Ying, T. Zeng, T. Long, Y. Wang, “Simulating and forecasting the cumulative confirmed cases of SARS-CoV-2 in China by Boltzmann function-based regression analyses”, Journal of Infection, 80 (2020), 602–605 | DOI
[16] A. Kucharski, T. Russell, C. Diamond, Y. Liu, J. Edmunds, S. Funk, R. M. Eggo, “Early dynamics of transmission and control of COVID-19: a mathematical modelling study”, Lancet Infect Dis, 20 (2020), 553–558 | DOI
[17] U. Nguemdjo, F. Meno, A. Dongfack, B. Ventelou, “Simulating the progression of the COVID-19 disease in Cameroon using SIR models”, PLoS ONE, 15:8 (2020), e0237832 | DOI
[18] Z. Zaplotnik, A. Gavric, L. Medic, “Simulation of the COVID-19 epidemic on the social network of Slovenia: Estimating the intrinsic forecast uncertainty”, PLoS ONE, 15:8 (2020), e0238090 | DOI
[19] A. Atangana, S. I. Araz, “Mathematical model of COVID-19 spread in Turkey and South Africa: Theory, methods and application”, Advances in Difference Equations, 2020:1 (2020), 1–89 | DOI | MR
[20] Levashkin S.P., Agapov S.N., Zakharova O.I., Ivanov K.N., Kuzmina E.S., Sokolovskii V.A., Monasova A.S., Vorobev A.V., Apeshin D.N., “Issledovanie adaptivno-kompartmentnoi modeli rasprostraneniya KOVID-19 v nekotorykh regionakh RF metodami optimizatsii”, Matematicheskaya biologiya i bioinformatika, 16:1 (2021), 136–151 | DOI
[21] Vinnitskii S.I., Gusev A.A., Derbov V.L., Krasovitskii P.M., Penkov F.M., Chuluunbaatar G., “Redutsirovannaya model SIR pandemii COVID-19”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 61:3 (2021), 400–412 | DOI | Zbl
[22] A. Abidemi, Z. M. Zainuddin, N. A.B. Aziz, “Impact of control interventions on COVID-19 population dynamics in Malaysia: a mathematical study”, Eur. Phys. J. Plus, 136(237) (2021) | DOI
[23] C. Kavitha, A. Gowrisankar, S. Banerjee, The second and third waves in India: when will the pandemic be culminated?, Eur. Phys. J. Plus, 136(596) (2021) | DOI
[24] Pertsev N.V., Pichugin B.Yu., “Primenenie metoda Monte-Karlo dlya modelirovaniya dinamiki soobschestv vzaimodeistvuyuschikh individuumov”, Vestnik voronezhskogo gosudarstvennogo tekhnicheskogo universiteta, 2:5 (2006), 70–76 | Zbl
[25] N. V. Pertsev, B. J. Pichugin, “An individual-based stochastic model of the spread of tuberculosis”, J. Appl. Ind. Math, 4:3 (2010), 359–370 | DOI | MR
[26] V. N. Leonenko, N. V. Pertsev, M. Artzrouni, “Using high performance algorithms for the hybrid simulation of disease dynamics on CPU and GPU”, Procedia Computer Science, 51 (2015), 150–159 | DOI
[27] B. J. Pichugin, N. V. Pertsev, V. A. Topchii, K. K. Loginov, “Stochastic modeling of age-structed population with time and size dependence of immigration rate”, Russ. J. Numer. Anal. Math. Modelling, 33:5 (2018), 289–299 | DOI | MR | Zbl
[28] Pertsev N.V., Loginov K.K., Topchii V.A., “Analiz stadiya-zavisimoi modeli epidemii, postroennoi na osnove nemarkovskogo sluchainogo protsessa”, Sibirskii zhurnal industrialnoi matematiki, 23:3 (2020), 105–122 | DOI | Zbl
[29] M. A. Marchenko, G. A. Mikhailov, “Parallel realization of statistical simulation and random number generators”, Russ. J. Numer. Anal. Math. Modelling, 17 (2002), 113–124 | DOI | MR | Zbl
[30] G. A. Mikhailov, A. V. Voitishek, Numerical statistical modeling. Monte Carlo Methods, M., 2006, 368 pp. (in Russ.)
[31] Marchenko M., “PARMONC A Software Library for Massively Parallel Stochastic Simulation”, Parallel Computing Technologies. PaCT 2011, Lecture Notes in Computer Science, 6873, ed. Malyshkin V., Springer, Berlin–Heidelberg, 2011, 302–316 | DOI
[32] Kramer G., Matematicheskie metody statistiki, Mir, M., 1975, 648 pp.
[33] Marchuk G.I., Matematicheskie modeli v immunologii. Vychislitelnye metody i eksperimenty, Nauka, M., 1991, 304 pp.
[34] G. Bocharov, V. Volpert, B. Ludewig, A. Meyerhans, Mathematical Immunology of Virus Infections, Springer, Cham, 2018, 245 pp. | DOI | MR | Zbl