Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2021_16_2_a1, author = {V. M. Efimov and K. V. Efimov and V. Yu. Kovaleva and Yu. G. Matushkin}, title = {Principal components of genetic sequences: correlations and significance}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {299--316}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2021_16_2_a1/} }
TY - JOUR AU - V. M. Efimov AU - K. V. Efimov AU - V. Yu. Kovaleva AU - Yu. G. Matushkin TI - Principal components of genetic sequences: correlations and significance JO - Matematičeskaâ biologiâ i bioinformatika PY - 2021 SP - 299 EP - 316 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2021_16_2_a1/ LA - ru ID - MBB_2021_16_2_a1 ER -
%0 Journal Article %A V. M. Efimov %A K. V. Efimov %A V. Yu. Kovaleva %A Yu. G. Matushkin %T Principal components of genetic sequences: correlations and significance %J Matematičeskaâ biologiâ i bioinformatika %D 2021 %P 299-316 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2021_16_2_a1/ %G ru %F MBB_2021_16_2_a1
V. M. Efimov; K. V. Efimov; V. Yu. Kovaleva; Yu. G. Matushkin. Principal components of genetic sequences: correlations and significance. Matematičeskaâ biologiâ i bioinformatika, Tome 16 (2021) no. 2, pp. 299-316. http://geodesic.mathdoc.fr/item/MBB_2021_16_2_a1/
[1] V. M. Efimov, K. V. Efimov, V. Yu. Kovaleva, “Metod glavnykh komponent i ego obobscheniya dlya posledovatelnosti lyubogo tipa (PCA-Seq)”, Vavilovskii zhurnal genetiki i selektsii, 23:8 (2019), 1032–1036 | DOI | MR
[2] Duras T., “The fixed effects PCA model in a common principal component environment”, Communications in Statistics-Theory and Methods, 2020, 1–21 | DOI | MR
[3] Efron B., “Bootstrap Methods: Another Look at the Jackknife”, The Annals of Statistics, 7 (1979), 1–26 | DOI | MR | Zbl
[4] M. E. Timmerman, H. A. Kiers, A. K. Smilde, “Estimating confidence intervals for principal component loadings: a comparison between the bootstrap and asymptotic results”, British Journal of Mathematical and Statistical Psychology, 60:2 (2007), 295–314 | DOI
[5] M. Linting, J. J. Meulman, P. J. Groenen, A. J. Van der Kooij, “Stability of nonlinear principal components analysis: An empirical study using the balanced bootstrap”, Psychological methods, 12:3 (2007), 359 | DOI
[6] V. Efimov, K. Efimov, Kovaleva V., “Anchored Bootstrap”, 2020 Cognitive Sciences, Genomics and Bioinformatics (CSGB), IEEE, 2020, 32–35 | DOI
[7] R. Hendus-Altenburger, J. Vogensen, E. S. Pedersen, A. Luchini, R. Araya-Secchi, A. H. Bendsoe, Nanditha Shyam Prasad, Andreas Prestel, Marite Cardenas, Elena Pedraz-Cuesta, Lise Arleth, Stine F. Pedersen, Kragelund B. B., “The intracellular lipid-binding domain of human Na+/H+ exchanger 1 forms a lipid-protein co-structure essential for activity”, Communications Biology, 3:1 (2020), 1–18 | DOI
[8] A. Koch, A. Schwab, “Cutaneous pH landscape as a facilitator of melanoma initiation and progression”, Acta Physiologica, 225:1 (2019), e13105 | DOI
[9] I. Bohme, R. Schonherr, J. Eberle, A. K. Bosserhoff, “Membrane Transporters and Channels in Melanoma”, Reviews of Physiology, Biochemistry and Pharmacology, 2020, 1–106 | DOI
[10] Z. Petho, K. Najder, T. Carvalho, R. McMorrow, L. M. Todesca, M. Rugi, E. Bulk, A. Chan, C. W.G. M. Lowik, S. J. Reshkin, A. Schwab, “pH-channeling in cancer: How pH-dependence of cation channels shapes cancer pathophysiology”, Cancers, 12:9 (2020), 2484 | DOI
[11] D. Polunin, I. Shtaiger, V. Efimov, “JACOBI4 software for multivariate analysis of biological data”, bioRxiv, 2019, 803684 | DOI
[12] O. Hammer, D. A. Harper, P. D. Ryan, “PAST: Paleontological statistics software package for education and data analysis”, Palaeontologia Electronica, 4:1 (2001) (data obrascheniya: 05.09.2021) http://palaeo-electronica.org/2001_1/past/issue1_01.htm
[13] T. Hill, P. Lewicki, Statistics, StatSoft Ltd, UK, 2006, 719 pp.
[14] NCBI, (data obrascheniya: 05.09.2021) https://www.ncbi.nlm.nih.gov
[15] J. C. Gower, “Some distance properties of latent root and vector methods used in multivariate analysis”, Biometrika, 53:3–4 (1966), 325–338 | DOI | MR | Zbl
[16] M. Nei, S. Kumar, Molekulyarnaya evolyutsiya i filogenetika, KVSch, Kiev, 2004
[17] V. M. Efimov, M. A. Melchakova, V. Yu. Kovaleva, “Geometricheskie svoistva evolyutsionnykh distantsii”, Vavilovskii zhurnal genetiki i selektsii, 17:4/1 (2013), 714–723
[18] AAindex (v.9.2 ot 13.02.2017), (data obrascheniya: 05.09.2021) https://www.genome.jp/aaindex
[19] S. Kawashima, P. Pokarowski, M. Pokarowska, A. Kolinski, T. Katayama, M. Kanehisa, “AAindex: amino acid index database, progress report 2008”, Nucleic Acids Research, 36:1 (2008), D202–D205 | DOI
[20] P. H.A. Sneath, “Relations between chemical structure and biological activity in peptides”, Journal of Theoretical Biology, 12:2 (1966), 157–195 | DOI
[21] S. Hellberg, M. Sjoestroem, B. Skagerberg, S. Wold, “Peptide quantitative structure-activity relationships, a multivariate approach”, Journal of Medicinal Chemistry, 30:7 (1987), 1126–1135 | DOI
[22] M. Sandberg, L. Eriksson, J. Jonsson, M. Sjostrom, S. Wold, “New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids”, Journal of Medicinal Chemistry, 41:14 (1988), 2481–2491 | DOI
[23] A. A. Kosky, V. Dharmavaram, G. Ratnaswamy, M. C. Manning, “Multivariate analysis of the sequence dependence of asparagine deamidation rates in peptides”, Pharmaceutical Research, 26:11 (2009), 2417–2428 | DOI
[24] N. J. Zbacnik, C. S. Henry, M. C. Manning, “A Chemometric Approach Toward Predicting the Relative Aggregation Propensity: A$\beta$ (1–42)”, Journal of Pharmaceutical Sciences, 109:1 (2020), 624–632 | DOI
[25] MPI Bioinformatics Toolkit, (data obrascheniya: 05.09.2021) https://toolkit.tuebingen.mpg.de
[26] L. Zimmermann, A. Stephens, S. Z. Nam, D. Rau, J. Kubler, M. Lozajic, F. Gabler, J. Soding, A. N. Lupas, V. Alva, “A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core”, Journal of Molecular Biology, 430:15 (2018), 2237–2243 | DOI
[27] D. T. Jones, “Protein secondary structure prediction based on position-specific scoring matrices”, Journal of Molecular Biology, 292:2 (1999), 195–202 | DOI
[28] R. Heffernan, Y. Yang, K. Paliwal, Y. Zhou, “Capturing non-local interactions by long short-term memory bidirectional recurrent neural networks for improving prediction of protein secondary structure, backbone angles, contact numbers and solvent accessibility”, Bioinformatics, 33:18 (2017), 2842–2849 | DOI
[29] R. Yan, D. Xu, J. Yang, S. Walker, Y. Zhang, “A comparative assessment and analysis of 20 representative sequence alignment methods for protein structure prediction”, Scientific Reports, 3 (2013), 2619 | DOI
[30] S. Wang, J. Peng, J. Ma, J. Xu, “Protein secondary structure prediction using deep convolutional neural fields”, Scientific Reports, 6 (2016), 18962 | DOI
[31] M. S. Klausen, M. C. Jespersen, H. Nielsen, K. K. Jensen, V. I. Jurtz, C. K. Soenderby, M. O.A. Sommer, O. Winther, M. Nielsen, B. Petersen, P. Marcatili, “NetSurfP-2.0: Improved prediction of protein structural features by integrated deep learning”, Proteins: Structure, Function, and Bioinformatics, 87:6 (2019), 520–527 | DOI
[32] A. Krogh, B. Larsson, G. Von Heijne, E. L. Sonnhammer, “Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes”, Journal of Molecular Biology, 305:3 (2001), 567–580 | DOI
[33] L. Kall, A. Krogh, E. L. Sonnhammer, “A combined transmembrane topology and signal peptide prediction method”, Journal of Molecular Biology, 338:5 (2004), 1027–1036 | DOI
[34] L. Kall, A. Krogh, E. L. Sonnhammer, “An HMM posterior decoder for sequence feature prediction that includes homology information”, Bioinformatics, 21:1 (2005), i251–i257 | DOI
[35] J. B. Kruskal, “Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis”, Psychometrika, 29:2 (1964), 1–27 | DOI | MR
[36] E. A. Kel, N. A. Kolchanov, V. V. Solovev, “Konvergentnoe proiskhozhdenie povtorov v genakh, kodiruyuschikh globulyarnye belki. Analiz faktorov, obuslavlivayuschikh nalichie pryamykh povtorov”, Zhurn. obsch. biol., 49:3 (1988), 343–354
[37] N. A. Kolchanov, E. A. Kel, V. V. Solovev, “Konvergentnoe proiskhozhdenie povtorov v genakh, kodiruyuschikh globulyarnye belki. Modelirovanie konvergentnogo vozniknoveniya pryamykh povtorov”, Zhurn. obsch. biol., 49:6 (1988), 723–728
[38] C. P. Chen, A. Kernytsky, B. Rost, “Transmembrane helix predictions revisited”, Protein Science, 11:12 (2002), 2774–2791 | DOI
[39] T. Lesnik, C. Reiss, “Detection of transmembrane helical segments at the nucleotide level in eukaryotic membrane protein genes”, Biochem. Mol. Biol. Int., 44:3 (1998), 471–479 | DOI
[40] H. Nakashima, A. Yoshihara, K. I. Kitamura, “Favorable and unfavorable amino acid residues in water-soluble and transmembrane proteins”, J. Biomedical Science and Engineering, 6:1 (2013), 36–44 | DOI
[41] N. Vakirlis, O. Acar, B. Hsu, N. C. Coelho, S. B. Van Oss, A. Wacholder, K. Medetgul-Ernar, R. W. Bowman II, C. P. Hines, Iannotta J. et all, “De novo emergence of adaptive membrane proteins from thymine-rich genomic sequences”, Nature communications, 11:1 (2020), 1–18 | DOI