Two-component model of microalgae growth in the turbidostat
Matematičeskaâ biologiâ i bioinformatika, Tome 16 (2021) no. 1, pp. 101-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper focuses on the study of light influence mechanisms on microalgae culture growth in the turbidostat. The method of turbidostat culture provides the same light conditions for all cells, stabilization of their biochemical composition, as well as the constancy of all physicochemical factors of the environment. The main approaches and principles of modeling the microalgae culture growth are presented. Modern models are shown to be based on classical concepts of considering cell biomass as the sum of two or more compounds. The use of two-component models for microalgae is due to both photochemical and enzymatic processes of biosynthesis of cell structures from mineral substances due to the energy of high-potential forms of macroergs. The proposed mathematical model is represented by a system of two differential equations describing the synthesis of reserve biomass compounds at the expense of light and biosynthesis of structural components from reserve ones. The model takes into account that a part of the reserve compounds is spent on replenishing the pool of macroergs, and a part of the structural component can be converted into a reserve one. The rates of synthesis of structural and reserve forms of biomass are given by linear splines and expressed in terms of the reduced fluxes of the energy or plastic substrate. The model was verified on the experimental data of the chlorophyllostat culture Tetraselmis viridis. It is shown that the light curve of T. viridis is characterized by a double change in the limiting factor and can be divided into a region of metabolic, light limiting and a region of saturation. A decrease in the specific growth rate is related to a decrease in the efficiency of light energy conversion.
@article{MBB_2021_16_1_a7,
     author = {A. S. Lelekov and R. P. Trenkenshu},
     title = {Two-component model of microalgae growth in the turbidostat},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {101--114},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2021_16_1_a7/}
}
TY  - JOUR
AU  - A. S. Lelekov
AU  - R. P. Trenkenshu
TI  - Two-component model of microalgae growth in the turbidostat
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2021
SP  - 101
EP  - 114
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2021_16_1_a7/
LA  - ru
ID  - MBB_2021_16_1_a7
ER  - 
%0 Journal Article
%A A. S. Lelekov
%A R. P. Trenkenshu
%T Two-component model of microalgae growth in the turbidostat
%J Matematičeskaâ biologiâ i bioinformatika
%D 2021
%P 101-114
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2021_16_1_a7/
%G ru
%F MBB_2021_16_1_a7
A. S. Lelekov; R. P. Trenkenshu. Two-component model of microalgae growth in the turbidostat. Matematičeskaâ biologiâ i bioinformatika, Tome 16 (2021) no. 1, pp. 101-114. http://geodesic.mathdoc.fr/item/MBB_2021_16_1_a7/

[1] Bilich G.L., Kryzhanovskii V.A., Biologiya, Polnyi kurs. V 3-kh t., v. 2, Botanika, Izdatelskii dom «ONIKS 21 vek», M., 2002, 544 pp.

[2] Fiziologiya rastenii, Uch. dlya stud. vuzov, Izd-vo «Akademiya», M., 2005, 640 pp.

[3] Minkevich I.G., “Matematicheskie problemy organizatsii metabolicheskikh putei iz biokhimicheskikh reaktsii”, Matematicheskaya biologiya i bioinformatika, 11:2 (2016), 406–425 | DOI

[4] Drozdov-Tikhomirov L.N, Scurida G.I., Serganova V.V., “Inner metabolic fluxes in multienzyme systems: lysine synthesis on acetate by Corynebacterium glutamicum”, Biotechnologia (Moscow), 2:8 (1986), 28–37

[5] Nazipova N.N., Elkin Yu.E., Panyukov V.V., Drozdov-Tikhomirov L.N., “Raschet skorostei metabolicheskikh reaktsii v zhivoi rastuschei kletke metodom balansa statsionarnykh metabolicheskikh potokov (metod BSMP)”, Matematicheskaya biologiya i bioinformatika, 2:1 (2007), 98–119 | DOI

[6] Alekseev V.V., Kryshev I.I., Sazykina T.G., Fizicheskoe i matematicheskoe modelirovanie ekosistem, Gidrometeoizdat, S.-Pb., 1992, 367 pp.

[7] Fursova P.V., Levich A.P., Matematicheskoe modelirovanie v ekologii soobschestv, Obzor literatury, VINITI, M., 2002, 181 pp.

[8] Pert S. Dzh., Osnovy kultivirovaniya mikroorganizmov i kletok, Mir, M., 1978, 330 pp.

[9] Pearl R., Reed L.J., “On the Mathematical Theory of Population Growth”, Metron, 3:1 (1923), 6–9 | MR

[10] Villi K., Dete V., Biologiya (Biologicheskie protsessy i zakony), Mir, M., 1975, 822 pp.

[11] Monod J., “The growth of bacterial cultures”, Ann. Rev. Microbiol., 3 (1949), 371–394 | DOI

[12] Blackman F.F., “Optima and limiting factors”, Ann. Bot. Lond., 19 (1905), 281–295 | DOI

[13] Liebig J., Chemistry in its Application to Agriculture and Physiology, Ph. D. Playfair L., Philadelphia, 1847, 135 pp.

[14] Chernavskii D.S., Ierusalimskii N.D., “K voprosu ob opredelyayuschem zvene v sisteme fermentativnykh reaktsii”, Izv. AN SSSR. Ser. biol., 5 (1965), 665–672

[15] Romanovskii Yu.M., Stepanova N.V., Chernavskii D.C., Matematicheskoe modelirovanie v biofizike, Nauka, M., 1975, 344 pp. | MR

[16] Trenkenshu R.P., Kinetika substratzavisimykh reaktsii pri razlichnoi organizatsii metabolicheskikh sistem, EKOSI-Gidrofizika, Sevastopol, 2005, 89 pp.

[17] Flynn K.J., “A mechanistic model for describing dynamic multi-nutrient, light, temperature interaction in phytoplankton”, J. Plan. Res., 23 (2001), 977–997 | DOI

[18] Trenkenshu R.P., Novikova T.M., “Prosteishie modeli rosta mikrovodoroslei. 10. Dinamika obschego biokhimicheskogo sostava kletok”, Morskoi ekologicheskii zhurnal, 13:4, 71–78 | MR

[19] Meer J., “An introduction to Dynamic Energy Budget (DEB) models with special emphasis on parameter estimation”, J. Sea Research, 56:2 (2006), 85–102 | DOI

[20] Monaco C.J., McQuaid S.D., “Applicability of Dynamic Energy Budget (DEB) models across steep environmental gradients”, Scientific reports, 8 (2018) | DOI

[21] Nisbet R.M., Jusup M., Klanjscek T., Pecquerie L., “Integrating dynamic energy budget (DEB) theory with traditional bioenergetic models”, J. Experim. Biol., 215 (2012), 892–902 | DOI

[22] Minkevich I.G., Materialno-energeticheskii balans i kinetika rosta mikroorganizmov, Izhevsk, M., 2005, 352 pp.

[23] Lelekov A.S., Trenkenshu R.P., “Modelirovanie soderzhaniya khlorofilla a v kulturakh mikrovodoroslei”, Matematicheskaya biologiya i bioinformatika, 15:2 (2020), 158–171 | DOI

[24] Trenkenshu R.P., “Vliyanie sveta na rost mikrovodoroslei v nepreryvnoi kulture nevysokoi plotnosti”, Voprosy sovremennoi algologii, 2019, no. 1 (19), 1–7 | DOI

[25] Trenkenshu R.P., “Dinamicheskaya model biotransformatsii rezervnykh i strukturnykh form biomassy mikrovodoroslei v temnote”, Voprosy sovremennoi algologii, 2016, no. 2 (12) (data obrascheniya: 11.05.2021) http://algology.ru/967

[26] Trenkenshu R.P., Lelekov A.S., Modelirovanie rosta mikrovodoroslei v kulture, OOO «Konstanta», Belgorod, 2017, 152 pp. | DOI

[27] Torzillo G., Sacchi A., Materassi R., Richmond A., “Effect of temperature on yield and night biomass loss in Spirulina platensis grown outdoors in tubular photobioreactors”, J. Appl. Phycol., 3 (1991), 103–109 | DOI

[28] Medvedev S.S., Fiziologiya rastenii, uchebnik, Izd-vo S.-Peterb. un-ta, S.-Pb., 2004, 336 pp.

[29] Horton P., Ruban A.V., “Molecular design of the photosystem II light-harvesting antenna: photosynthesis and photoprotection”, J. Experim. Bot., 56:411 (2005), 365–373 | DOI

[30] Niyogi K., Li X., Müller P., “Non-photochemical quenching. A response to excess light energy”, Plant Physiol., 125:4 (2001), 1558–1566 | DOI

[31] Tamoi M., Nagaoka M., Miyagawa Y., Shigeoka S., “Contribution of fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase to the photosynthetic rate and carbon flow in the Calvin cycle in transgenic plants”, Plant Cell Physiology, 29:10 (2006), 380–390 | DOI

[32] Nelson J.R., “Rates and possible mechanism of light-dependent degradation of pigments in detritus derived from phytoplankton”, J. Mar. Res., 51:1 (1993), 155–179 | DOI

[33] Rubin A.B., Biofizika, v 2 t., Mir, M., 2002, 448 pp.

[34] Goericke R., Welschmeyer N.A., “Pigment turnover in the marine diatom Thalassiosira weissflogii. 1. The $^{14}$SO$_2$-labeling kinetics of chlorophyll a”, J. Phycol., 28 (1992), 498–507 | DOI

[35] Ustinin D.M., Kovalenko I.B., Riznichenko G.Yu., Rubin A.B., “Sopryazhenie razlichnykh metodov kompyuternogo modelirovaniya v kompleksnoi modeli fotosinteticheskoi membrany”, Kompyuternye issledovaniya i modelirovanie, 5:1 (2013), 65–81

[36] Varfolomeev S.D., Gurevich K.G., Biokinetika, Prakticheskii kurs, FAIR-PRESS, M., 1999, 720 pp.

[37] Terskov I.A., Trenkenshu R.P., Belyanin V.N., “Svetozavisimyi rost vodorosli Platymonas viridis v nepreryvnoi kulture”, Izvestiya Akademii nauk SSSR. Seriya biologicheskaya, 2:10 (1981), 103–108

[38] Furyaev E.A., Mikrospektrofotometricheskie kharakteristiki kletok vodoroslei v razlichnykh usloviyakh kultivirovaniya, avtoref. dis. kand. biol. nauk, Krasnoyarsk, 1979, 23 pp.

[39] Borovkov A.B., Gudvilovich I.N., “Osobennosti nakopleniya i sootnosheniya pigmentov v kulture Dunaliella salina Teod. pri razlichnoi poverkhnostnoi osveschennosti”, Aktualnye voprosy biologicheskoi fiziki i khimii, 3:3 (2018), 626–629

[40] Pronina N.A., “Organizatsiya i fiziologicheskaya rol SO2-kontsentriruyuschego mekhanizma pri fotosinteze mikrovodoroslei”, Fiziologiya rastenii, 47:5 (2000), 801–810