Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2021_16_1_a7, author = {A. S. Lelekov and R. P. Trenkenshu}, title = {Two-component model of microalgae growth in the turbidostat}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {101--114}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2021_16_1_a7/} }
TY - JOUR AU - A. S. Lelekov AU - R. P. Trenkenshu TI - Two-component model of microalgae growth in the turbidostat JO - Matematičeskaâ biologiâ i bioinformatika PY - 2021 SP - 101 EP - 114 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2021_16_1_a7/ LA - ru ID - MBB_2021_16_1_a7 ER -
A. S. Lelekov; R. P. Trenkenshu. Two-component model of microalgae growth in the turbidostat. Matematičeskaâ biologiâ i bioinformatika, Tome 16 (2021) no. 1, pp. 101-114. http://geodesic.mathdoc.fr/item/MBB_2021_16_1_a7/
[1] Bilich G.L., Kryzhanovskii V.A., Biologiya, Polnyi kurs. V 3-kh t., v. 2, Botanika, Izdatelskii dom «ONIKS 21 vek», M., 2002, 544 pp.
[2] Fiziologiya rastenii, Uch. dlya stud. vuzov, Izd-vo «Akademiya», M., 2005, 640 pp.
[3] Minkevich I.G., “Matematicheskie problemy organizatsii metabolicheskikh putei iz biokhimicheskikh reaktsii”, Matematicheskaya biologiya i bioinformatika, 11:2 (2016), 406–425 | DOI
[4] Drozdov-Tikhomirov L.N, Scurida G.I., Serganova V.V., “Inner metabolic fluxes in multienzyme systems: lysine synthesis on acetate by Corynebacterium glutamicum”, Biotechnologia (Moscow), 2:8 (1986), 28–37
[5] Nazipova N.N., Elkin Yu.E., Panyukov V.V., Drozdov-Tikhomirov L.N., “Raschet skorostei metabolicheskikh reaktsii v zhivoi rastuschei kletke metodom balansa statsionarnykh metabolicheskikh potokov (metod BSMP)”, Matematicheskaya biologiya i bioinformatika, 2:1 (2007), 98–119 | DOI
[6] Alekseev V.V., Kryshev I.I., Sazykina T.G., Fizicheskoe i matematicheskoe modelirovanie ekosistem, Gidrometeoizdat, S.-Pb., 1992, 367 pp.
[7] Fursova P.V., Levich A.P., Matematicheskoe modelirovanie v ekologii soobschestv, Obzor literatury, VINITI, M., 2002, 181 pp.
[8] Pert S. Dzh., Osnovy kultivirovaniya mikroorganizmov i kletok, Mir, M., 1978, 330 pp.
[9] Pearl R., Reed L.J., “On the Mathematical Theory of Population Growth”, Metron, 3:1 (1923), 6–9 | MR
[10] Villi K., Dete V., Biologiya (Biologicheskie protsessy i zakony), Mir, M., 1975, 822 pp.
[11] Monod J., “The growth of bacterial cultures”, Ann. Rev. Microbiol., 3 (1949), 371–394 | DOI
[12] Blackman F.F., “Optima and limiting factors”, Ann. Bot. Lond., 19 (1905), 281–295 | DOI
[13] Liebig J., Chemistry in its Application to Agriculture and Physiology, Ph. D. Playfair L., Philadelphia, 1847, 135 pp.
[14] Chernavskii D.S., Ierusalimskii N.D., “K voprosu ob opredelyayuschem zvene v sisteme fermentativnykh reaktsii”, Izv. AN SSSR. Ser. biol., 5 (1965), 665–672
[15] Romanovskii Yu.M., Stepanova N.V., Chernavskii D.C., Matematicheskoe modelirovanie v biofizike, Nauka, M., 1975, 344 pp. | MR
[16] Trenkenshu R.P., Kinetika substratzavisimykh reaktsii pri razlichnoi organizatsii metabolicheskikh sistem, EKOSI-Gidrofizika, Sevastopol, 2005, 89 pp.
[17] Flynn K.J., “A mechanistic model for describing dynamic multi-nutrient, light, temperature interaction in phytoplankton”, J. Plan. Res., 23 (2001), 977–997 | DOI
[18] Trenkenshu R.P., Novikova T.M., “Prosteishie modeli rosta mikrovodoroslei. 10. Dinamika obschego biokhimicheskogo sostava kletok”, Morskoi ekologicheskii zhurnal, 13:4, 71–78 | MR
[19] Meer J., “An introduction to Dynamic Energy Budget (DEB) models with special emphasis on parameter estimation”, J. Sea Research, 56:2 (2006), 85–102 | DOI
[20] Monaco C.J., McQuaid S.D., “Applicability of Dynamic Energy Budget (DEB) models across steep environmental gradients”, Scientific reports, 8 (2018) | DOI
[21] Nisbet R.M., Jusup M., Klanjscek T., Pecquerie L., “Integrating dynamic energy budget (DEB) theory with traditional bioenergetic models”, J. Experim. Biol., 215 (2012), 892–902 | DOI
[22] Minkevich I.G., Materialno-energeticheskii balans i kinetika rosta mikroorganizmov, Izhevsk, M., 2005, 352 pp.
[23] Lelekov A.S., Trenkenshu R.P., “Modelirovanie soderzhaniya khlorofilla a v kulturakh mikrovodoroslei”, Matematicheskaya biologiya i bioinformatika, 15:2 (2020), 158–171 | DOI
[24] Trenkenshu R.P., “Vliyanie sveta na rost mikrovodoroslei v nepreryvnoi kulture nevysokoi plotnosti”, Voprosy sovremennoi algologii, 2019, no. 1 (19), 1–7 | DOI
[25] Trenkenshu R.P., “Dinamicheskaya model biotransformatsii rezervnykh i strukturnykh form biomassy mikrovodoroslei v temnote”, Voprosy sovremennoi algologii, 2016, no. 2 (12) (data obrascheniya: 11.05.2021) http://algology.ru/967
[26] Trenkenshu R.P., Lelekov A.S., Modelirovanie rosta mikrovodoroslei v kulture, OOO «Konstanta», Belgorod, 2017, 152 pp. | DOI
[27] Torzillo G., Sacchi A., Materassi R., Richmond A., “Effect of temperature on yield and night biomass loss in Spirulina platensis grown outdoors in tubular photobioreactors”, J. Appl. Phycol., 3 (1991), 103–109 | DOI
[28] Medvedev S.S., Fiziologiya rastenii, uchebnik, Izd-vo S.-Peterb. un-ta, S.-Pb., 2004, 336 pp.
[29] Horton P., Ruban A.V., “Molecular design of the photosystem II light-harvesting antenna: photosynthesis and photoprotection”, J. Experim. Bot., 56:411 (2005), 365–373 | DOI
[30] Niyogi K., Li X., Müller P., “Non-photochemical quenching. A response to excess light energy”, Plant Physiol., 125:4 (2001), 1558–1566 | DOI
[31] Tamoi M., Nagaoka M., Miyagawa Y., Shigeoka S., “Contribution of fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase to the photosynthetic rate and carbon flow in the Calvin cycle in transgenic plants”, Plant Cell Physiology, 29:10 (2006), 380–390 | DOI
[32] Nelson J.R., “Rates and possible mechanism of light-dependent degradation of pigments in detritus derived from phytoplankton”, J. Mar. Res., 51:1 (1993), 155–179 | DOI
[33] Rubin A.B., Biofizika, v 2 t., Mir, M., 2002, 448 pp.
[34] Goericke R., Welschmeyer N.A., “Pigment turnover in the marine diatom Thalassiosira weissflogii. 1. The $^{14}$SO$_2$-labeling kinetics of chlorophyll a”, J. Phycol., 28 (1992), 498–507 | DOI
[35] Ustinin D.M., Kovalenko I.B., Riznichenko G.Yu., Rubin A.B., “Sopryazhenie razlichnykh metodov kompyuternogo modelirovaniya v kompleksnoi modeli fotosinteticheskoi membrany”, Kompyuternye issledovaniya i modelirovanie, 5:1 (2013), 65–81
[36] Varfolomeev S.D., Gurevich K.G., Biokinetika, Prakticheskii kurs, FAIR-PRESS, M., 1999, 720 pp.
[37] Terskov I.A., Trenkenshu R.P., Belyanin V.N., “Svetozavisimyi rost vodorosli Platymonas viridis v nepreryvnoi kulture”, Izvestiya Akademii nauk SSSR. Seriya biologicheskaya, 2:10 (1981), 103–108
[38] Furyaev E.A., Mikrospektrofotometricheskie kharakteristiki kletok vodoroslei v razlichnykh usloviyakh kultivirovaniya, avtoref. dis. kand. biol. nauk, Krasnoyarsk, 1979, 23 pp.
[39] Borovkov A.B., Gudvilovich I.N., “Osobennosti nakopleniya i sootnosheniya pigmentov v kulture Dunaliella salina Teod. pri razlichnoi poverkhnostnoi osveschennosti”, Aktualnye voprosy biologicheskoi fiziki i khimii, 3:3 (2018), 626–629
[40] Pronina N.A., “Organizatsiya i fiziologicheskaya rol SO2-kontsentriruyuschego mekhanizma pri fotosinteze mikrovodoroslei”, Fiziologiya rastenii, 47:5 (2000), 801–810