Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2021_16_1_a6, author = {Y. Fritsler and S. Bartsev and O. Belozor and Ant. Shuvaev and And. Shuvaev}, title = {Modifying the models of calcium dynamics in astrocytes by ryanodine release}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {86--100}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2021_16_1_a6/} }
TY - JOUR AU - Y. Fritsler AU - S. Bartsev AU - O. Belozor AU - Ant. Shuvaev AU - And. Shuvaev TI - Modifying the models of calcium dynamics in astrocytes by ryanodine release JO - Matematičeskaâ biologiâ i bioinformatika PY - 2021 SP - 86 EP - 100 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2021_16_1_a6/ LA - ru ID - MBB_2021_16_1_a6 ER -
%0 Journal Article %A Y. Fritsler %A S. Bartsev %A O. Belozor %A Ant. Shuvaev %A And. Shuvaev %T Modifying the models of calcium dynamics in astrocytes by ryanodine release %J Matematičeskaâ biologiâ i bioinformatika %D 2021 %P 86-100 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2021_16_1_a6/ %G ru %F MBB_2021_16_1_a6
Y. Fritsler; S. Bartsev; O. Belozor; Ant. Shuvaev; And. Shuvaev. Modifying the models of calcium dynamics in astrocytes by ryanodine release. Matematičeskaâ biologiâ i bioinformatika, Tome 16 (2021) no. 1, pp. 86-100. http://geodesic.mathdoc.fr/item/MBB_2021_16_1_a6/
[1] Bazargani N., Attwell D., “Astrocyte calcium signaling: the third wave”, Nature Neuroscience, 19:2 (2016), 182–189 | DOI
[2] Okubo Y., Kanemaru K., Suzuki J., Kobayashi K., Hirose K., Iino M., “Inositol 1, 4, 5-trisphosphate receptor type 2-independent Ca2+ release from the endoplasmic reticulum in astrocytes”, Glia, 67:1 (2019), 113–124 | DOI
[3] Siekmann I., Wagner L.I., Yule D., Crampin E.J, Sneyd J., “A kinetic model for type I and II IP3R accounting for mode changes”, Biophysical Journal, 103:4 (2012), 658–668 | DOI
[4] Shuai J., Pearson J.E., Foskett J.K., Mak D.-O. D., Parker I., “A kinetic model of single and clustered IP3 receptors in the absence of Ca2+ feedback”, Biophysical Journal, 93:4 (2007), 1151–1162 | DOI
[5] Fiacco T.A., McCarthy K.D., “Astrocyte calcium elevations: properties, propagation, and effects on brain signaling”, Glia, 54:7 (2006), 676–690 | DOI
[6] Beck A., Nieden R.Z., Schneider H.-P., Deitmer J.W., “Calcium release from intracellular stores in rodent astrocytes and neurons in situ”, Cell Calcium, 35:1 (2004), 47–58 | DOI
[7] Parri H.R., Crunelli V., “The role of Ca2+ in the generation of spontaneous astrocytic Ca2+ oscillations”, Neuroscience, 120:4 (2003), 979–992 | DOI
[8] Aley K.P., Murray J.H., Boyle J.P., Pearson H.A., Peers C., “Hypoxia stimulates ca2+ release from intracellular stores in astrocytes via cyclic adp ribose-mediated activation of ryanodine receptors”, Cell Calcium, 39:1 (2006), 95–100 | DOI
[9] Manninen T., Havela R., Linne M.-L., “Reproducibility and comparability of computational models for astrocyte calcium excitability”, Frontiers in Neuroinformatics, 11 (2017), 11 | DOI
[10] Manninen T., Havela R., Linne M.-L., “Computational models for calcium-mediated astrocyte functions”, Frontiers in Computational Neuroscience, 12 (2018), 14 | DOI
[11] Manninen T., Saudargiene A., Linne M. L., “Astrocyte-mediated spike-timing-dependent long-term depression modulates synaptic properties in the developing cortex”, PLoS Computational Biology, 16:11 (2020), e1008360 | DOI
[12] Lavrentovich M., Hemkin S., “A mathematical model of spontaneous calcium (ii) oscillations in astrocytes”, Journal of Theoretical Biology, 251:4 (2008), 553–560 | DOI | MR | Zbl
[13] Riera J., Hatanaka R., Ozaki T., Kawashima R., “Modeling the spontaneous Ca2+ oscillations in astrocytes: inconsistencies and usefulness”, Journal of Integrative Neuroscience, 10:4 (2011), 439–473 | DOI
[14] Riera J., Hatanaka R., Uchida T., Ozaki T., Kawashima R., “Quantifying the uncertainty of spontaneous Ca2+ oscillations in astrocytes: particulars of Alzheimer's disease”, Biophysical Journal, 101:3 (2011), 554–564 | DOI
[15] De Pittà M., Goldberg M., Volman V., Berry H., Ben-Jacob E., “Glutamate regulation of calcium and IP3 oscillating and pulsating dynamics in astrocytes”, Journal of Biological Physics, 35:4 (2009), 383–411 | DOI
[16] Dupont G., Loomekandja Lokenye E.F., Challiss RA J., “A model for Ca2+ oscillations stimulated by the type 5 metabotropic glutamate receptor: an unusual mechanism based on repetitive, reversible phosphorylation of the receptor”, Biochimie, 93:12 (2011), 2132–2138 | DOI
[17] López-Caamal F., Oyarzún D.A., Middleton R.H., García M.R., “Spatial quantification of cytosolic ca 2+ accumulation in nonexcitable cells: an analytical study”, IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 11:3 (2014), 592–603 | DOI | MR
[18] Lehninger A.L., “Mitochondria and calcium ion transport”, Biochemical Journal, 119:2 (1970), 129 | DOI
[19] Zeng S., Li B., Zeng S., Chen S., “Simulation of spontaneous Ca2+ oscillations in astrocytes mediated by voltage-gated calcium channels”, Biophysical Journal, 97:9 (2009), 2429–2437 | DOI
[20] Keizer J., Levine L., “Ryanodine receptor adaptation and Ca2+(-)induced Ca2+ release-dependent Ca2+ oscillations”, Biophysical Journal, 71:6 (1996), 3477–3487 | DOI
[21] Politi A., Gaspers L.D., Thomas A.P., Höfer T., “Models of IP3 and Ca2+ oscillations: Frequency encoding and identification of underlying feedbacks”, Biophysical Journal, 90:9 (2006), 3120–3133 | DOI