Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2021_16_1_a5, author = {M. Pitchaimani and A. Saranya Devi}, title = {An investigation on analytical properties of delayed fractional order {HIV} model: a case study}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {57--85}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2021_16_1_a5/} }
TY - JOUR AU - M. Pitchaimani AU - A. Saranya Devi TI - An investigation on analytical properties of delayed fractional order HIV model: a case study JO - Matematičeskaâ biologiâ i bioinformatika PY - 2021 SP - 57 EP - 85 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2021_16_1_a5/ LA - en ID - MBB_2021_16_1_a5 ER -
%0 Journal Article %A M. Pitchaimani %A A. Saranya Devi %T An investigation on analytical properties of delayed fractional order HIV model: a case study %J Matematičeskaâ biologiâ i bioinformatika %D 2021 %P 57-85 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2021_16_1_a5/ %G en %F MBB_2021_16_1_a5
M. Pitchaimani; A. Saranya Devi. An investigation on analytical properties of delayed fractional order HIV model: a case study. Matematičeskaâ biologiâ i bioinformatika, Tome 16 (2021) no. 1, pp. 57-85. http://geodesic.mathdoc.fr/item/MBB_2021_16_1_a5/
[1] HIV/AIDS, World Health Organization report, 2019
[2] L. Cai, X. Li, M. Ghosh, B. Guo, “Stability analysis of an HIV/AIDS epidemic model with treatment”, Journal of Computational and Applied Mathematics, 28 (2009), 313–323 | DOI | MR
[3] E. A. Hernandez-Vargas, R. H. Middleton, “Modeling the three stages in HIV infection”, Journal of Theoretical Biology, 320 (2013), 33–40 | DOI | MR | Zbl
[4] S. S. Swarnali, G. P. Samanta, “Dynamical behavior of an HIV/AIDS epidemic model”, Differential Equations and Dynamical Systems, 22 (2014), 369–395 | DOI | MR | Zbl
[5] L. Simpson, A. B. Gumel, “Mathematical assessment of the role of pre-exposure prophylaxis on HIV transmission dynamics”, Applied Mathematics and Computation, 293 (2017), 168–193 | DOI | MR | Zbl
[6] M. H. Akrami, A. Atabaigi, “Hopf and forward bifurcation of an integer and fractional-order SIR epidemic model with logistic growth of the susceptible individuals”, Journal of Applied Mathematics and Computing, 64 (2020), 615–633 | DOI | MR | Zbl
[7] L. Wu, Z. Li, Y. Zhang, B. Xie, “Complex Behavior Analysis of a Fractional-Order Land Dynamical Model with Holling-II Type Land Reclamation Rate on Time Delay”, Discrete Dynamics in Nature and Society, 2020 (2020) | MR
[8] A. S. Shaikh, I. N. Shaikh, K. S. Nisar, “A mathematical model of COVID-19 using fractional derivative: outbreak in India with dynamics of transmission and control”, Advances in Difference Equations, 373 (2020) | MR
[9] Y. Wang, K. Liu, Y. Lou, “An age-structured within-host HIV model with T-cell competition”, Nonlinear Analysis: Real World Applications, 38 (2017), 1–20 | DOI | MR | Zbl
[10] J. Xu, Y. Geng, Y. Zhou, “Global dynamics for an age-structured HIV virus infection model with cellular infection and antiretroviral therapy”, Applied Mathematics and Computation, 22 (2017), 3721–3747 | MR
[11] S. Gakkhar, N. Chavda, “A dynamical model for HIV-TB co-infection”, Applied Mathematics and Computation, 218 (2012), 9261–9270 | DOI | MR | Zbl
[12] C. Pinto, A. Carvalho, “New findings on the dynamics of HIV and TB coinfection models”, Applied Mathematics and Computation, 242 (2014), 36–46 | DOI | MR | Zbl
[13] P. Krishnapriya, M. Pitchaimani, T. M. Witten, “Mathematical analysis of an influenza A epidemic model with discrete delay”, Journal of computational and Applied Mathematics, 324 (2017), 155–172 | DOI | MR | Zbl
[14] C. Monica, M. Pitchaimani, “Analysis of stability and Hopf bifurcation for HIV-1 dynamics 83 with PI and three intacelluar delays”, Nonlinear Analysis:Real World Applications, 27 (2016), 55–69 | DOI | MR | Zbl
[15] P. Krishnapriya, M. Pitchaimani, “Analysis of time delay in viral infection model with immune impairment”, Journal of Applied Mathematics and Computing, 27 (2017), 421–453 | DOI | MR
[16] M. Pitchaimani, C. Monica, M. Divya, “Stability analysis for HIV infection delay model with protease inhibitor”, BioSystems, 114 (2013), 118–124 | DOI
[17] Z. U.A. Zafar, N. Ali, Z. Shah, P. Roy, G. Zaman, W. Deebani, Hopf bifurcation and global dynamics of time delayed Dengue model, Computer Methods and Programs in Biomedicine, 195, 2020 | DOI
[18] Z. U.A. Zafar, N. Ali, G. Zaman, P. Thounthong, C. Tunc, “Analysis and numerical simulations of fractional order Vallis system”, Alexandria Engineering Journal, 59 (2020), 2591–2605 | DOI
[19] Z. U.A. Zafar, “Fractional order Lengyel-Epstein chemical reaction model”, Computational and Applied Mathematics, 38 (2019) | DOI | MR | Zbl
[20] Z. U.A. Zafar, M. Mushtaq, K. Rehan, “A non-integer order dengue internal transmission model”, Advances in Difference Equations, 23 (2018) | MR
[21] Z. U.A. Zafar, K. Rehan, M. Mushtaq, “HIV/AIDS epidemic fractional-order model”, Journal of Difference Equations and Applications, 23 (2017), 1298–1315 | DOI | MR | Zbl
[22] Zafar Z. U.A, K. Rehan, M. Mushtaq, “Fractional-order scheme for bovine babesiosis disease and tick populations”, Advances in Difference Equations, 86 (2017) | MR | Zbl
[23] H. Kheiri, M. Jafari, “Optimal control of a fractional-order model for the HIV/AIDS epidemic”, International Journal of Biomathematics, 11 (2018) | DOI | MR | Zbl
[24] S. Mondal, A. Lahiri, N. Bairagi, “Analysis of a fractional order eco-epidemiological model with prey infection and type 2 functional response”, Mathematical Methods in the Applied Sciences, 40 (2017), 6776–6789 | DOI | MR | Zbl
[25] Fatmawati, E. M. Shaiful, M. I. Utoyo, “A Fractional-Order Model for HIV Dynamics in a Two-Sex Population”, International Journal of Mathematics and Mathematical Sciences, 2018 (2018), 1–11 | DOI | MR
[26] A. A.M. Arafa, M. Khalil, A. Sayed, “A Non-Integer Variable Order Mathematical Model of Human Immunodeficiency Virus and Malaria Coinfection with Time Delay”, Complexity, 2019 (2019), 1–13 | DOI
[27] A. M. El-Sayed, A. A. Arafa, M. Khalil, A. Sayed, “Backward bifurcation in a fractional order epidemiological model”, Progress in Fractional Differentiation and Applications, 3 (2017), 281–287 | DOI
[28] A. M. El-Sayed, A. A. Arafa, M. Khalil, A. Sayed, “Mathematical Model of Vector-Borne Plant Disease with Memory on the Host and the Vector”, Progress in Fractional Differentiation and Applications, 2 (2016), 277–285 | DOI
[29] A. A.M. Arafa, S. Z. Rida, M. Khalil, “The effect of anti-viral drug treatment of human immunodeficiency virus type 1 (HIV-1) described by a fractional order model”, Applied Mathematical Modelling, 37 (2013), 2189–2196 | DOI | MR | Zbl
[30] A. A.M. Arafa, Rida S.Z, M. Khalil, “Fractional modeling dynamics of HIV and CD4+ T-cells during primary infection”, Nonlinear Biomedical Physics, 6 (2012), 1–7 | DOI
[31] A. A.M. Arafa, S. Z. Rida, M. Khalil, “A fractional-order model of HIV infection: numerical solution and comparisons with data of patients”, International Journal of Biomathematics, 7 (2014) | DOI | MR
[32] M. Das, G. Samanta, “Stability analysis of a fractional ordered COVID-19 model”, Computational and Mathematical Biophysics, 9 (2021), 22–45 | DOI | MR | Zbl
[33] M. Das, G. Samanta, “A delayed fractional order food chain model with fear effect and prey refuge”, Mathematics and Computers in Simulation, 178 (2020), 218–245 | DOI | MR | Zbl
[34] Y. Yan, C. Kou, “Stability analysis for a fractional differential model of HIV infection of CD4$^+$ T-Cells with time delay”, Mathematics and Computers in Simulation, 82 (2012), 1572–1585 | DOI | MR | Zbl
[35] X. Wang, Z. Wang, “Dynamic Analysis of a Delayed Fractional-Order SIR Model with Saturated Incidence and Treatment Functions”, International Journal of Bifurcation and Chaos, 28 (2018) | MR
[36] F. A. Rihan, Q. M. Al-Mdallal, H. J. AlSakaji, A. Hashish, “A fractional-order epidemic model with time-delay and nonlinear incidence rate”, Chaos, Solitons and Fractals, 126 (2019), 97–105 | DOI | MR | Zbl
[37] F. A. Rihan, S. Lakshmanan, A. H. Hashish, R. Rakkiyappan, E. Ahmed, “Fractional-order delayed predator-prey systems with Holling type-II functional response”, Nonlinear Dynamics, 50 (2015), 777–789 | DOI | MR
[38] A. Carvalho, C. M.A. Pinto, “A delay fractional order model for the co-infection of malaria and HIV/AIDS”, International Journal of Dynamics and Control, 5 (2017), 168–186 | DOI | MR
[39] R. Chinnathambi, F. A. Rihan, H. J. Alsakaji, “A fractional-order model with time delay for tuberculosis with endogenous reactivation and exogenous reinfections”, Mathematical Methods in the Applied Sciences, 2019, 1–15 | MR
[40] B. R. Sontakke, A. S. Shaikh, “Properties of Caputo Operator and Its Applications to Linear Fractional Differential Equations”, International Journal of Engineering Research and Applications, 5 (2015), 22–27
[41] O. Diekmann, J. A.P. Heesterbeek, J. A.J. Metz, “On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations”, Journal of Mathematical Biology, 28 (1990), 365–382 | DOI | MR | Zbl
[42] S. Marino, I. B. Hogue, C. J. Ray, D. E. Kirschner, “A methodology for performing global uncertainty and sensitivity analysis in systems biology”, Journal of Theoretical Biology, 254 (2008), 178–196 | DOI | MR | Zbl
[43] S. Bhalekar, V. Daftardar-Gejji, “A Predictor-Corrector Scheme for Solving Nonlinear Delay Differential Equations of Fractional Order”, Journal of Fractional Calculus and Applications, 1 (2011), 1–9 | Zbl
[44] P. A. Naik, “Global dynamics of a fractional-order SIR epidemic model with memory”, International Journal of Biomathematics, 13 (2020) | MR
[45] WHO. Global Health Observatory data repository. HIV/AIDS , 2020 (Retrieved : 2020-07-09) https://apps.who.int/gho/data/view.main