Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2021_16_1_a4, author = {Hassan Aghdaoui and Mouhcine Tilioua and Kottakkaran Sooppy Nisar and Ilyas Khan}, title = {A fractional epidemic model with {Mittag-Leffler} kernel for {COVID-19}}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {39--56}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2021_16_1_a4/} }
TY - JOUR AU - Hassan Aghdaoui AU - Mouhcine Tilioua AU - Kottakkaran Sooppy Nisar AU - Ilyas Khan TI - A fractional epidemic model with Mittag-Leffler kernel for COVID-19 JO - Matematičeskaâ biologiâ i bioinformatika PY - 2021 SP - 39 EP - 56 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2021_16_1_a4/ LA - en ID - MBB_2021_16_1_a4 ER -
%0 Journal Article %A Hassan Aghdaoui %A Mouhcine Tilioua %A Kottakkaran Sooppy Nisar %A Ilyas Khan %T A fractional epidemic model with Mittag-Leffler kernel for COVID-19 %J Matematičeskaâ biologiâ i bioinformatika %D 2021 %P 39-56 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2021_16_1_a4/ %G en %F MBB_2021_16_1_a4
Hassan Aghdaoui; Mouhcine Tilioua; Kottakkaran Sooppy Nisar; Ilyas Khan. A fractional epidemic model with Mittag-Leffler kernel for COVID-19. Matematičeskaâ biologiâ i bioinformatika, Tome 16 (2021) no. 1, pp. 39-56. http://geodesic.mathdoc.fr/item/MBB_2021_16_1_a4/
[1] Atangana A., Modelling the spread of COVID-19 with new fractal-fractional operators: Can the lockdown save mankind before vaccination?, Chaos, Solitons Fractals, 136 (2020), 109860 | DOI | MR
[2] Atangana A., Araz S.I., “Mathematical model of COVID-19 spread in Turkey and South Africa: Theory, methods and applications”, Advances in Difference Equations, 2020:1 (2020), 1–89 | DOI | MR
[3] Yang Y., Lu Q., Liu M., Wang Y., Zhang A., Jalali N., Dean N.E., Longini I., Halloran M.E., Xu B., et al., Epidemiological and clinical features of the 2019 novel coronavirus outbreak in China, medRxiv, 2020, 89 pp. | DOI | MR
[4] Diekmann O., Heesterbeek J.A.P., Metz J.A.J., “On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations”, Journal of Mathematical Biology, 28:4 (1990), 365–382 | DOI | MR | Zbl
[5] World Health Organization Website, (accessed 29.04.2021) https://www.who.int/
[6] Atangana A., Alkahtani B.S., “Analysis of the Keller-Segel model with a fractional derivative without singular kernel”, Entropy, 17:6 (2015), 4439–4453 | DOI | MR | Zbl
[7] Atangana A., Baleanu D., “New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model”, Thermal Science, 20 (2016), 763–769 | DOI
[8] Atangana A., Koca I., “On the new fractional derivative and application to nonlinear Baggs and Freedman model”, J. Nonlinear Sci. Appl., 9:5 (2016), 2467–2480 | DOI | MR | Zbl
[9] Yavuz M., Özdemir N., Baskonus H.M., “Solutions of partial differential equations using the fractional operator involving Mittag-Leffler kernel”, The European Physical Journal Plus, 133:6 (2018), 1–11 | DOI
[10] Saad K.M., Deniz S., Baleanu D., “On a new modified fractional analysis of Nagumo equation”, International Journal of Biomathematics, 12:03 (2019), 1950034 | DOI | MR | Zbl
[11] Yusuf A., Qureshi S., Inc M., Aliyu A.I., Baleanu B., Shaikh A.A., “Two-strain epidemic model involving fractional derivative with Mittag-Leffler kernel”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 28:12 (2018), 123121 | DOI | MR | Zbl
[12] Bildik N., Deniz S., “A new fractional analysis on the polluted lakes system”, Chaos, Solitons Fractals, 122 (2019), 17–24 | DOI | MR | Zbl
[13] Uçar S., “Existence and uniqueness results for a smoking model with determination and education in the frame of non-singular derivatives”, Discrete Contin. Dyn. Syst. Ser. A, 2018, 1–17 | DOI | MR
[14] Hethcote H., “The mathematics of infectious diseases”, SIAM Review, 42:4 (2000), 599–653 | DOI | MR | Zbl
[15] Brauer F., “Mathematical epidemiology: Past, present, and future”, Infectious Disease Modelling, 2:2 (2017), 113–127 | DOI
[16] Yang C., Wang J., “A mathematical model for the novel coronavirus epidemic in Wuhan, China”, Mathematical Biosciences and Engineering, 17:3 (2020), 2708 | DOI | MR | Zbl
[17] Khan M.A., Ullah S., Farooq M., “A new fractional model for tuberculosis with relapse via Atangana-Baleanu derivative”, Chaos, Solitons Fractals, 116 (2018), 227–238 | DOI | MR | Zbl
[18] Khan M.A., Atangana A., “Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative”, Alexandria Engineering Journal, 59:4 (2020), 2379–2389 | DOI
[19] Ullah M.Z., Alzahrani A.K., Baleanu D., “An efficient numerical technique for a new fractional tuberculosis model with nonsingular derivative operator”, Journal of Taibah University for Science, 13:1 (2019), 1147–1157 | DOI
[20] Khan M.A., Atangana A., “Dynamics of Ebola Disease in the Framework of Different Fractional Derivatives”, Entropy, 21:3 (2019), 303 | DOI | MR
[21] Khan M.A., Ismail M., Ullah S., Farhan M., “Fractional order SIR model with generalized incidence rate”, AIMS Mathematics, 5:3 (2020), 1856–1880 | DOI | MR
[22] The Moroccan Ministry of Public Health, COVID-19 Platform, (accessed 29.04.2021) http://www.covidmaroc.ma/Pages/AccueilAR.aspx
[23] Shaikh A.S., Shaikh I.N., Nisar K.S., “A Mathematical Model of COVID-19 Using Fractional Derivative: Outbreak in India with Dynamics of Transmission and Control”, Advances in Difference Equations, 2020:1 (2020), 1–19 | DOI | MR | Zbl
[24] Shaikh A.S., Jadhav V.S., Timol M.G., Nisar K.S., Khan I., Analysis of the COVID-19 Pandemic Spreading in India by an Epidemiological Model and Fractional Differential Operator, Preprints, 2020, 16 pp. | DOI
[25] Kermack W.O., McKendrick A.G., “A contribution to the mathematical theory of epidemics”, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical haracter, 115:772 (1927), 700–721 | DOI | Zbl
[26] Prakasha D.G., Veeresha P., Baskonus H.M., “Analysis of the dynamics of hepatitis E virus using the Atangana-Baleanu fractional derivative”, The European Physical Journal Plus, 134:5 (2019), 1–11 | DOI
[27] Mekkaoui T., Atangana A., “New numerical approximation of fractional derivative with non-local and non-singular kernel: application to chaotic models”, The European Physical Journal Plus, 132:10 (2017), 1–16 | DOI | MR
[28] Atangana A., Owolabi K.M., “New numerical approach for fractional differential equations”, Mathematical Modelling of Natural Phenomena, 13:1 (2018), 3 | DOI | MR | Zbl
[29] Rihan F.A., Al-Mdallal Q.M., AlSakaji H.J., Hashish A., “A fractional-order epidemic model with time-delay and nonlinear incidence rate”, Chaos, Solitons Fractals, 126 (2019), 97–105 | DOI | MR | Zbl
[30] Ahmad S., Ullah A., Al-Mdallal Q.M., Khan H., Shah K., Khan A., “Fractional order mathematical modeling of COVID-19 transmission”, Chaos, Solitons Fractals, 2020 | DOI | MR
[31] Asif M., Khan Z.A., Haider N., Al-Mdallal Q., “Numerical simulation for solution of SEIR models by meshless and finite difference methods”, Chaos, Solitons Fractals, 141 (2020), 110340 | DOI | MR
[32] Asif M., Jan S.U., Haider N., Al-Mdallal Q., Abdeljawad T., “Numerical modeling of NPZ and SIR models with and without diffusion”, Results in Physics, 19 (2020), 103512 | DOI
[33] Hajji M.A., Al-Mdallal Q., “Numerical simulations of a delay model for immune system-tumor interaction”, Sultan Qaboos University Journal for Science, 23:1 (2018), 19–31 | DOI
[34] Thabet S.T.M., Abdo M.S., Shah K., Abdeljawad T., “Study of transmission dynamics of COVID-19 mathematical model under ABC fractional order derivative”, Results in Physics, 19 (2020), 103507 | DOI