Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2021_16_1_a1, author = {P. Onishchenko and Yu. Zakharov and V. Borisov and K. Klyshnikov and E. Ovcharenko and Yu. Kudravceva and Yu. Shokin}, title = {Modeling of hemodynamics in a vascular bioprosthesis}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {15--28}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2021_16_1_a1/} }
TY - JOUR AU - P. Onishchenko AU - Yu. Zakharov AU - V. Borisov AU - K. Klyshnikov AU - E. Ovcharenko AU - Yu. Kudravceva AU - Yu. Shokin TI - Modeling of hemodynamics in a vascular bioprosthesis JO - Matematičeskaâ biologiâ i bioinformatika PY - 2021 SP - 15 EP - 28 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2021_16_1_a1/ LA - ru ID - MBB_2021_16_1_a1 ER -
%0 Journal Article %A P. Onishchenko %A Yu. Zakharov %A V. Borisov %A K. Klyshnikov %A E. Ovcharenko %A Yu. Kudravceva %A Yu. Shokin %T Modeling of hemodynamics in a vascular bioprosthesis %J Matematičeskaâ biologiâ i bioinformatika %D 2021 %P 15-28 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2021_16_1_a1/ %G ru %F MBB_2021_16_1_a1
P. Onishchenko; Yu. Zakharov; V. Borisov; K. Klyshnikov; E. Ovcharenko; Yu. Kudravceva; Yu. Shokin. Modeling of hemodynamics in a vascular bioprosthesis. Matematičeskaâ biologiâ i bioinformatika, Tome 16 (2021) no. 1, pp. 15-28. http://geodesic.mathdoc.fr/item/MBB_2021_16_1_a1/
[1] L. A. Bokeriya, R. G. Gudkova, E. B. Milievskaya, Z. F. Kudzoeva, V. V. Pryanishnikov, Serdechno-sosudistaya khirurgiya — 2016. Bolezni i vrozhdennye anomalii sistemy krovoobrascheniya, NMITsSSKh im. A.N. Bakuleva MZ RF, M., 2017
[2] S. Ravi, Z. Qu, E. L. Chaikof, “Polymeric Materials for Tissue Engineering of Arterial Substitutes”, Vascular, 17 (2009), 45–54 | DOI
[3] I. Töpel, C. Uhl, I. Ayx, M. Steinbauer, “Xenografts in septic vascular surgery”, Gefasschirurgie, 21:2 (2016), 55–58 | DOI
[4] K. U. Klyshnikov, E. A. Ovcharenko, V. G. Borisov, I. N. Sizova, N. N. Burkov, A. V. Batranin, Y. A. Kudryavtseva, Yu. N. Zaharov, Yu. I. Shokin, “Modeling of the hemodynamics of vascular prostheses “KemAngiprotez” in silico”, Mathematical Biology and Bioinformatics, 12:2 (2017), 559–569 | DOI
[5] P. D. Ballyk, C. Walsh, J. Butany, M. Ojha, “Compliance mismatch may promote graft-artery intimal hyperplasia by altering suture-line stresses”, J. Biomech., 31 (1998), 229–237 | DOI
[6] N. Zonnebeld, W. Huberts, M. M. van Loon, T. Delhaas, J. H.M. Tordoir, “Preoperative computer simulation for planning of vascular access surgery in hemodialysis patients”, The Journal of Vascular Access, 18:1 (2017), 118–124 | DOI
[7] H. Mohammadi, S. Lessard, E. Therasse, R. Mongrain, G. Soulez, “A Numerical Preoperative Planning Model to Predict Arterial Deformations in Endovascular Aortic Aneurysm Repair”, Annals of Biomedical Engineering, 46:12 (2018), 2148–2161 | DOI
[8] O. S. Rukhlenko, O. A. Dudchenko, K. E. Zlobina, G. T. Guria, “Mathematical Modeling of Intravascular Blood Coagulation under Wall Shear Stress”, PLoS ONE, 10:7 (2015) | DOI
[9] N. K. Schiller, T. Franz, N. S. Weerasekara, P. Zilla, B. D. Reddy, “A simple fluid-structure coupling algorithm for the study of the anastomotic mechanics of vascular grafts”, Computer Methods in Biomechanics and Biomedical Engineering, 13:6 (2010), 773–781 | DOI | MR
[10] J. Fojas, R. De Leon, “Carotid Artery Modeling Using the Navier-Stokes Equations for an Incompressible, Newtonian and Axisymmetric Flow”, APCBEE Procedia, 7 (2013), 86–92 | DOI
[11] V. Gaurav, V. Katiyar, “Computational Study of Steady Blood Flow Simulation in a Complete Coronary Artery Bypass Anastomosis Model”, CJPAS, 1 (2007), 103–109
[12] S. L. Yeow, H. L. Leo, “Hemodynamic Study of Flow Remodeling Stent Graft for the Treatment of Highly Angulated Abdominal Aortic Aneurysm”, Comput. Math. Methods Med., 2016 | DOI
[13] J. Wen, T. H. Zheng, W. T. Jiang, X. Y. Deng, Y. B. Fan, “A comparative study of helical-type and traditional-type artery bypass grafts: numerical simulation”, ASAIO J., 57:5 (2011), 399–406 | DOI
[14] S. Pinto, E. Doutel, J. Campos, J. Miranda, “Blood analog fluid flow in vessels with stenosis: Development of an openfoam code to simulate pulsatile flow and elasticity of the fluid”, APCBEE Procedia, 7 (2013), 73–79 | DOI
[15] C. L. Lin, A. Srivastava, D. Coffey, D. Keefe, M. Horner, M. Swenson, A. Erdman, “A System for Optimizing Medical Device Development Using Finite Element Analysis Predictions”, Journal of Medical Devices, 8:2 (2014), 0209411–0209413 | DOI
[16] A. E. Morgan, J. L. Pantoja, J. Weinsaft, E. Grossi, J. M. Guccione, L. Ge, M. Ratcliffe, “Finite Element Modeling of Mitral Valve Repair”, J. Biomech. Eng., 138:2 (2016), 0210091–0210098 | DOI
[17] L. C. Lee, L. Ge, Z. Zhang, M. Pease, S. D. Nikolic, R. Mishra, J. M. Guccione, “Patient-specific finite element modeling of the Cardiokinetix Parachute\circledR device: Effects on left ventricular wall stress and function”, Med. Biol. Eng. Comput., 52:6 (2014), 557–566 | DOI
[18] A. Boyd, D. Kuhn, R. Lozowy, G. Kulbisky, “Low wall shear stress predominates at sites of abdominal aortic aneurysm rupture”, Basic Research Study, 63:6 (2016), 1613–1619 | DOI
[19] H. Gharahi, B. Zambrano, D. Zhu, K. DeMarco, S. Baek, “Computational fluid dynamic simulation of human carotid artery bifurcation based on anatomy and volumetric blood flow rate measured with magnetic resonance imaging”, Int. J. Adv. Eng. Sci. Appl. Math., 8:1 (2016), 40–60 | DOI | MR
[20] A. J. Geers, H. G. Morales, I. Larrabide, C. Butakoff, P. Bijlenga, A. F. Frangi, “Wall shear stress at the initiation site of cerebral aneurysms”, Biomech. Model. Mechanobiol., 16 (2016), 97–115 | DOI
[21] N. N. Burkov, Yu. A. Kudryavtseva, E. A. Zhuchkova, L. S. Barbarash, “Otdalennye rezultaty primeneniya bioprotezov «KemAngioprotez», modifitsirovannykh nizkomolekulyarnym geparinom, v infraingvinalnoi pozitsii”, Meditsina v Kuzbasse, 1:1 (2016), 53–58
[22] M. Razzaq, S. Turek, J. Hron, J. F. Acker, F. Weichert, M. Wagner, I. Q. Grunwald, C. Roth, B. F. Romeike, Numerical simulation of fluid-structure interaction with application to aneurysm hemodynamics, Technical University, Fakultat fur Mathematik, 2009 | MR
[23] K. U. Klyshnikov, E. A. Ovcharenko, V. I. Ganyukov, R. S. Tarasov, A. N. Kokov, L. S. Barbarass, “Algorithm for Reconstructing a 3D Model of the Aortic Root Using Uniform Crushing of CT Images”, Sovremennye tekhnologii v meditsine, 10:4 (2018), 283–294 | DOI
[24] C. Caro, T. Pedley, R. Schroter, W. Seed, K. Parker, The Mechanics of the Circulation, Cambridge University Press, Cambridge, 2011
[25] D. N. Ku, “Blood flow in arteries”, Annual Review of Fluid Mechanics, 29:1 (1997), 399–434 | DOI | MR
[26] J. H. Ferziger, M. Perić, R. L. Street, Computational Methods for Fluid Dynamics, 3rd Ed., Springer, Berlin, 2001 | DOI | MR
[27] SALOME, open source integration platform for numerical simulation, (data obrascheniya: 26.01.2021) http://www.salome-platform.org/
[28] The OpenFOAM Foundation. OpenCFD, OpenFOAM user guide, (data obrascheniya: 26.01.2021) http://www.openfoam.org/
[29] R. I. Issa, “Solution of the implicitly discretised fluid flow equations by operator-splitting”, Journal of Computational Physics, 62:1 (1985), 40–65 | DOI | MR
[30] U. Ayachit, The ParaView Guide: A Parallel Visualization Application, Kitware, Incorporated, 2015
[31] L. G. Loitsyanskii, Mekhanika zhidkosti i gaza, Drofa, M., 2003, 840 pp.
[32] M. J. Buono, T. Krippes, F. W. Kolkhorst, A. T. Williams, P. Cabrales, “Increases in core temperature counterbalance effects of hemoconcentration on blood viscosity during prolonged exercise in the heat”, Exp. Physiol., 101:2 (2016), 332–342 | DOI
[33] A. F. Totorean, S. I. Bernad, I. C. Hudrea, R. F. Susan-Resiga, “Competitive flow and anastomosis angle influence on bypass hemodynamics in unsteady flow conditions”, AIP Conference Proceedings, 1863:1 (2017), 030013 | DOI
[34] Y. Shintani, K. Iino, Y. Yamamoto, H. Kato, H. Takemura, T. Kiwata, “Analysis of Computational Fluid Dynamics and Particle Image Velocimetry Models of Distal-End Side-to-Side and End-to-Side Anastomoses for Coronary Artery Bypass Grafting in a Pulsatile Flow”, Circulation Journal, 82:1 (2017), 110–117 | DOI
[35] M. S. Olufsen, C. S. Peskin, W. Y. Kim, E. M. Pedersen, A. Nadim, J. Larsen, “Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions”, Ann. Biomed. Eng., 28:11 (2000), 1281–1299 | DOI
[36] A. Keshmiri, A. Ruiz-Soler, M. McElroy, F. Kabinejadian, “Numerical investigation on the geometrical effects of novel graft designs for peripheral artery bypass surgery”, Procedia CIRP, 49 (2016), 147–152 | DOI
[37] J. S. Sanders, A. L. Mark, D. W. Ferguson, “Importance of aortic baroreflex in regulation of sympathetic responses during hypotension. Evidence from direct sympathetic nerve recordings in humans”, Circulation, 79:1 (1989), 83–92 | DOI
[38] M. H. Freitag, R. S. Vasan, What is normal blood pressure?, Curr. Opin. Nephrol. Hypertens, 12:3 (2003), 285–292 | DOI
[39] P. Di Achille, G. Tellides, C. A. Figueroa, J. D. Humphrey, “A haemodynamic predictor of intraluminal thrombus formation in abdominal aortic aneurysms”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 470:2172 (2014), 20140163 | DOI | MR | Zbl
[40] S. L. Diamond, “Systems analysis of thrombus formation”, Circ. Res, 118:9 (2016), 1348–1362 | DOI
[41] L. D. Casa, D. H. Deaton, D. N. Ku, “Role of high shear rate in thrombosis”, J. Vasc. Surg, 61:4 (2015), 1068–1080 | DOI
[42] Z. M. Ruggeri, “The role of von Willebrand factor in thrombus formation”, Thromb. Res, 120:1 (2007), 5–9 | DOI
[43] J. E. Hull, B. V. Balakin, B. M. Kellerman, D. K. Wrolstad, “Computational fluid dynamic evaluation of the side-to-side anastomosis for arteriovenous fistula”, J. Vasc. Surg, 58:1 (2013), 110–117 | DOI
[44] J. de Andrade Silva, J. Karam-Filho, C. C.H. Borges, “Computational analysis of anastomotic angles by blood flow conditions in side-to-end radio-cephalic fistulae used in hemodialysis”, J. Biomed. Sc. Eng, 8:03 (2015), 131–141 | DOI
[45] S. Giordana, S. J. Sherwin, J. Peiró, D. J. Doorly, J. S. Crane, K. E. Lee, N. J. Cheshire, C. G. Caro, “Local and global geometric influence on steady flow in distal anastomoses of peripheral bypass grafts”, Journal of Biomechanical Engineering, 127:7 (2005), 1087–1098 | DOI
[46] R. E. Rumbaut, P. Thiagarajan, “Platelet-vessel wall interactions in hemostasis and thrombosis”, Synthesis Lectures on Integrated Systems Physiology: From Molecule to Function, 2:1 (2010), 1–75 | DOI