Modeling of hemodynamics in a vascular bioprosthesis
Matematičeskaâ biologiâ i bioinformatika, Tome 16 (2021) no. 1, pp. 15-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

The study of blood flow in vascular bioprostheses is a rather complicated task, since the shape of the inner surface of the bioprosthesis is variable, due to xenogenic origin. Because of this, vortex zones can occur inside the vascular bioprosthesis. In addition, the flow structure may contain sections where the flow velocity is abnormally high. It is all the more difficult to assess the nature of the course when using this vascular bioprosthesis as a shunt. A numerical comparison of the blood flow in a bioprosthesis connected to the main vascular bed using the «end-to-end» and «end-to-side» methods (bypass) taking into account the heart rate and blood pressure was performed. It is shown that, due to the nonlinearity of the initial bioprosthesis geometry, the implantation method affects the blood flow. Because of this, vortex zones arise and, with certain combinations of parameters, the effects of «separation» of vortices.
@article{MBB_2021_16_1_a1,
     author = {P. Onishchenko and Yu. Zakharov and V. Borisov and K. Klyshnikov and E. Ovcharenko and Yu. Kudravceva and Yu. Shokin},
     title = {Modeling of hemodynamics in a vascular bioprosthesis},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {15--28},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2021_16_1_a1/}
}
TY  - JOUR
AU  - P. Onishchenko
AU  - Yu. Zakharov
AU  - V. Borisov
AU  - K. Klyshnikov
AU  - E. Ovcharenko
AU  - Yu. Kudravceva
AU  - Yu. Shokin
TI  - Modeling of hemodynamics in a vascular bioprosthesis
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2021
SP  - 15
EP  - 28
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2021_16_1_a1/
LA  - ru
ID  - MBB_2021_16_1_a1
ER  - 
%0 Journal Article
%A P. Onishchenko
%A Yu. Zakharov
%A V. Borisov
%A K. Klyshnikov
%A E. Ovcharenko
%A Yu. Kudravceva
%A Yu. Shokin
%T Modeling of hemodynamics in a vascular bioprosthesis
%J Matematičeskaâ biologiâ i bioinformatika
%D 2021
%P 15-28
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2021_16_1_a1/
%G ru
%F MBB_2021_16_1_a1
P. Onishchenko; Yu. Zakharov; V. Borisov; K. Klyshnikov; E. Ovcharenko; Yu. Kudravceva; Yu. Shokin. Modeling of hemodynamics in a vascular bioprosthesis. Matematičeskaâ biologiâ i bioinformatika, Tome 16 (2021) no. 1, pp. 15-28. http://geodesic.mathdoc.fr/item/MBB_2021_16_1_a1/

[1] L. A. Bokeriya, R. G. Gudkova, E. B. Milievskaya, Z. F. Kudzoeva, V. V. Pryanishnikov, Serdechno-sosudistaya khirurgiya — 2016. Bolezni i vrozhdennye anomalii sistemy krovoobrascheniya, NMITsSSKh im. A.N. Bakuleva MZ RF, M., 2017

[2] S. Ravi, Z. Qu, E. L. Chaikof, “Polymeric Materials for Tissue Engineering of Arterial Substitutes”, Vascular, 17 (2009), 45–54 | DOI

[3] I. Töpel, C. Uhl, I. Ayx, M. Steinbauer, “Xenografts in septic vascular surgery”, Gefasschirurgie, 21:2 (2016), 55–58 | DOI

[4] K. U. Klyshnikov, E. A. Ovcharenko, V. G. Borisov, I. N. Sizova, N. N. Burkov, A. V. Batranin, Y. A. Kudryavtseva, Yu. N. Zaharov, Yu. I. Shokin, “Modeling of the hemodynamics of vascular prostheses “KemAngiprotez” in silico”, Mathematical Biology and Bioinformatics, 12:2 (2017), 559–569 | DOI

[5] P. D. Ballyk, C. Walsh, J. Butany, M. Ojha, “Compliance mismatch may promote graft-artery intimal hyperplasia by altering suture-line stresses”, J. Biomech., 31 (1998), 229–237 | DOI

[6] N. Zonnebeld, W. Huberts, M. M. van Loon, T. Delhaas, J. H.M. Tordoir, “Preoperative computer simulation for planning of vascular access surgery in hemodialysis patients”, The Journal of Vascular Access, 18:1 (2017), 118–124 | DOI

[7] H. Mohammadi, S. Lessard, E. Therasse, R. Mongrain, G. Soulez, “A Numerical Preoperative Planning Model to Predict Arterial Deformations in Endovascular Aortic Aneurysm Repair”, Annals of Biomedical Engineering, 46:12 (2018), 2148–2161 | DOI

[8] O. S. Rukhlenko, O. A. Dudchenko, K. E. Zlobina, G. T. Guria, “Mathematical Modeling of Intravascular Blood Coagulation under Wall Shear Stress”, PLoS ONE, 10:7 (2015) | DOI

[9] N. K. Schiller, T. Franz, N. S. Weerasekara, P. Zilla, B. D. Reddy, “A simple fluid-structure coupling algorithm for the study of the anastomotic mechanics of vascular grafts”, Computer Methods in Biomechanics and Biomedical Engineering, 13:6 (2010), 773–781 | DOI | MR

[10] J. Fojas, R. De Leon, “Carotid Artery Modeling Using the Navier-Stokes Equations for an Incompressible, Newtonian and Axisymmetric Flow”, APCBEE Procedia, 7 (2013), 86–92 | DOI

[11] V. Gaurav, V. Katiyar, “Computational Study of Steady Blood Flow Simulation in a Complete Coronary Artery Bypass Anastomosis Model”, CJPAS, 1 (2007), 103–109

[12] S. L. Yeow, H. L. Leo, “Hemodynamic Study of Flow Remodeling Stent Graft for the Treatment of Highly Angulated Abdominal Aortic Aneurysm”, Comput. Math. Methods Med., 2016 | DOI

[13] J. Wen, T. H. Zheng, W. T. Jiang, X. Y. Deng, Y. B. Fan, “A comparative study of helical-type and traditional-type artery bypass grafts: numerical simulation”, ASAIO J., 57:5 (2011), 399–406 | DOI

[14] S. Pinto, E. Doutel, J. Campos, J. Miranda, “Blood analog fluid flow in vessels with stenosis: Development of an openfoam code to simulate pulsatile flow and elasticity of the fluid”, APCBEE Procedia, 7 (2013), 73–79 | DOI

[15] C. L. Lin, A. Srivastava, D. Coffey, D. Keefe, M. Horner, M. Swenson, A. Erdman, “A System for Optimizing Medical Device Development Using Finite Element Analysis Predictions”, Journal of Medical Devices, 8:2 (2014), 0209411–0209413 | DOI

[16] A. E. Morgan, J. L. Pantoja, J. Weinsaft, E. Grossi, J. M. Guccione, L. Ge, M. Ratcliffe, “Finite Element Modeling of Mitral Valve Repair”, J. Biomech. Eng., 138:2 (2016), 0210091–0210098 | DOI

[17] L. C. Lee, L. Ge, Z. Zhang, M. Pease, S. D. Nikolic, R. Mishra, J. M. Guccione, “Patient-specific finite element modeling of the Cardiokinetix Parachute\circledR device: Effects on left ventricular wall stress and function”, Med. Biol. Eng. Comput., 52:6 (2014), 557–566 | DOI

[18] A. Boyd, D. Kuhn, R. Lozowy, G. Kulbisky, “Low wall shear stress predominates at sites of abdominal aortic aneurysm rupture”, Basic Research Study, 63:6 (2016), 1613–1619 | DOI

[19] H. Gharahi, B. Zambrano, D. Zhu, K. DeMarco, S. Baek, “Computational fluid dynamic simulation of human carotid artery bifurcation based on anatomy and volumetric blood flow rate measured with magnetic resonance imaging”, Int. J. Adv. Eng. Sci. Appl. Math., 8:1 (2016), 40–60 | DOI | MR

[20] A. J. Geers, H. G. Morales, I. Larrabide, C. Butakoff, P. Bijlenga, A. F. Frangi, “Wall shear stress at the initiation site of cerebral aneurysms”, Biomech. Model. Mechanobiol., 16 (2016), 97–115 | DOI

[21] N. N. Burkov, Yu. A. Kudryavtseva, E. A. Zhuchkova, L. S. Barbarash, “Otdalennye rezultaty primeneniya bioprotezov «KemAngioprotez», modifitsirovannykh nizkomolekulyarnym geparinom, v infraingvinalnoi pozitsii”, Meditsina v Kuzbasse, 1:1 (2016), 53–58

[22] M. Razzaq, S. Turek, J. Hron, J. F. Acker, F. Weichert, M. Wagner, I. Q. Grunwald, C. Roth, B. F. Romeike, Numerical simulation of fluid-structure interaction with application to aneurysm hemodynamics, Technical University, Fakultat fur Mathematik, 2009 | MR

[23] K. U. Klyshnikov, E. A. Ovcharenko, V. I. Ganyukov, R. S. Tarasov, A. N. Kokov, L. S. Barbarass, “Algorithm for Reconstructing a 3D Model of the Aortic Root Using Uniform Crushing of CT Images”, Sovremennye tekhnologii v meditsine, 10:4 (2018), 283–294 | DOI

[24] C. Caro, T. Pedley, R. Schroter, W. Seed, K. Parker, The Mechanics of the Circulation, Cambridge University Press, Cambridge, 2011

[25] D. N. Ku, “Blood flow in arteries”, Annual Review of Fluid Mechanics, 29:1 (1997), 399–434 | DOI | MR

[26] J. H. Ferziger, M. Perić, R. L. Street, Computational Methods for Fluid Dynamics, 3rd Ed., Springer, Berlin, 2001 | DOI | MR

[27] SALOME, open source integration platform for numerical simulation, (data obrascheniya: 26.01.2021) http://www.salome-platform.org/

[28] The OpenFOAM Foundation. OpenCFD, OpenFOAM user guide, (data obrascheniya: 26.01.2021) http://www.openfoam.org/

[29] R. I. Issa, “Solution of the implicitly discretised fluid flow equations by operator-splitting”, Journal of Computational Physics, 62:1 (1985), 40–65 | DOI | MR

[30] U. Ayachit, The ParaView Guide: A Parallel Visualization Application, Kitware, Incorporated, 2015

[31] L. G. Loitsyanskii, Mekhanika zhidkosti i gaza, Drofa, M., 2003, 840 pp.

[32] M. J. Buono, T. Krippes, F. W. Kolkhorst, A. T. Williams, P. Cabrales, “Increases in core temperature counterbalance effects of hemoconcentration on blood viscosity during prolonged exercise in the heat”, Exp. Physiol., 101:2 (2016), 332–342 | DOI

[33] A. F. Totorean, S. I. Bernad, I. C. Hudrea, R. F. Susan-Resiga, “Competitive flow and anastomosis angle influence on bypass hemodynamics in unsteady flow conditions”, AIP Conference Proceedings, 1863:1 (2017), 030013 | DOI

[34] Y. Shintani, K. Iino, Y. Yamamoto, H. Kato, H. Takemura, T. Kiwata, “Analysis of Computational Fluid Dynamics and Particle Image Velocimetry Models of Distal-End Side-to-Side and End-to-Side Anastomoses for Coronary Artery Bypass Grafting in a Pulsatile Flow”, Circulation Journal, 82:1 (2017), 110–117 | DOI

[35] M. S. Olufsen, C. S. Peskin, W. Y. Kim, E. M. Pedersen, A. Nadim, J. Larsen, “Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions”, Ann. Biomed. Eng., 28:11 (2000), 1281–1299 | DOI

[36] A. Keshmiri, A. Ruiz-Soler, M. McElroy, F. Kabinejadian, “Numerical investigation on the geometrical effects of novel graft designs for peripheral artery bypass surgery”, Procedia CIRP, 49 (2016), 147–152 | DOI

[37] J. S. Sanders, A. L. Mark, D. W. Ferguson, “Importance of aortic baroreflex in regulation of sympathetic responses during hypotension. Evidence from direct sympathetic nerve recordings in humans”, Circulation, 79:1 (1989), 83–92 | DOI

[38] M. H. Freitag, R. S. Vasan, What is normal blood pressure?, Curr. Opin. Nephrol. Hypertens, 12:3 (2003), 285–292 | DOI

[39] P. Di Achille, G. Tellides, C. A. Figueroa, J. D. Humphrey, “A haemodynamic predictor of intraluminal thrombus formation in abdominal aortic aneurysms”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 470:2172 (2014), 20140163 | DOI | MR | Zbl

[40] S. L. Diamond, “Systems analysis of thrombus formation”, Circ. Res, 118:9 (2016), 1348–1362 | DOI

[41] L. D. Casa, D. H. Deaton, D. N. Ku, “Role of high shear rate in thrombosis”, J. Vasc. Surg, 61:4 (2015), 1068–1080 | DOI

[42] Z. M. Ruggeri, “The role of von Willebrand factor in thrombus formation”, Thromb. Res, 120:1 (2007), 5–9 | DOI

[43] J. E. Hull, B. V. Balakin, B. M. Kellerman, D. K. Wrolstad, “Computational fluid dynamic evaluation of the side-to-side anastomosis for arteriovenous fistula”, J. Vasc. Surg, 58:1 (2013), 110–117 | DOI

[44] J. de Andrade Silva, J. Karam-Filho, C. C.H. Borges, “Computational analysis of anastomotic angles by blood flow conditions in side-to-end radio-cephalic fistulae used in hemodialysis”, J. Biomed. Sc. Eng, 8:03 (2015), 131–141 | DOI

[45] S. Giordana, S. J. Sherwin, J. Peiró, D. J. Doorly, J. S. Crane, K. E. Lee, N. J. Cheshire, C. G. Caro, “Local and global geometric influence on steady flow in distal anastomoses of peripheral bypass grafts”, Journal of Biomechanical Engineering, 127:7 (2005), 1087–1098 | DOI

[46] R. E. Rumbaut, P. Thiagarajan, “Platelet-vessel wall interactions in hemostasis and thrombosis”, Synthesis Lectures on Integrated Systems Physiology: From Molecule to Function, 2:1 (2010), 1–75 | DOI