Homologs of RNA ligase 2 of the bacteriophage T4 in metagenomes of ocean microbiota
Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020), pp. t88-t108.

Voir la notice de l'article provenant de la source Math-Net.Ru

RNA ligase 2 from a T4 phage RNA ligase 2 is a unique enzyme that is, unlike other RNA ligases, functionally similar to the DNA ligases, as well as it is related to editing RNA ligases of parasitic Trypanosoma and Leishmania. RNA ligases 2 are present in a limited (small) number of genomes, which, moreover, are strongly scattered throughout the tree of life. A search was made for homologs of T4 phage RNA ligase 2 in the databases of pelagic oceanic genetic data (GOS) and deep-sea sedimentary microbiota (LCGC14). In the metagenomes of the pelagic and sedimentary deep-water microbiota, 6 and 15 homologs, respectively, of RNA ligase 2 of bacteriophage T4 were found , suitable for analysis. Phylogenetic analysis of the detected amino acid sequences showed that most of them are similar to the homologs of RNA ligase 2 from bacteria and fungi. Five homologues of oceanic origin were found on a branch of a phylogenetic tree common to homologs from Tevenvirinae subfamily and Euglenozoa phylum. This result indicates the presence both in the water column of the open ocean and at its bottom of new, still unknown, organisms whose genomes encode this rare enzyme.
@article{MBB_2020_15_a5,
     author = {A. A. Zimin and N. A. Nikulin and N. N. Nazipova},
     title = {Homologs of {RNA} ligase 2 of the bacteriophage {T4} in metagenomes of ocean microbiota},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {t88--t108},
     publisher = {mathdoc},
     volume = {15},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2020_15_a5/}
}
TY  - JOUR
AU  - A. A. Zimin
AU  - N. A. Nikulin
AU  - N. N. Nazipova
TI  - Homologs of RNA ligase 2 of the bacteriophage T4 in metagenomes of ocean microbiota
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2020
SP  - t88
EP  - t108
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2020_15_a5/
LA  - en
ID  - MBB_2020_15_a5
ER  - 
%0 Journal Article
%A A. A. Zimin
%A N. A. Nikulin
%A N. N. Nazipova
%T Homologs of RNA ligase 2 of the bacteriophage T4 in metagenomes of ocean microbiota
%J Matematičeskaâ biologiâ i bioinformatika
%D 2020
%P t88-t108
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2020_15_a5/
%G en
%F MBB_2020_15_a5
A. A. Zimin; N. A. Nikulin; N. N. Nazipova. Homologs of RNA ligase 2 of the bacteriophage T4 in metagenomes of ocean microbiota. Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020), pp. t88-t108. http://geodesic.mathdoc.fr/item/MBB_2020_15_a5/

[1] S. Shuman, B. Schwer, “RNA capping enzyme and DNA ligase: A superfamily of covalent nucleotidyl transferases”, Molecular Microbiology, 17 (1995), 405–410 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/j.1365-2958.1995.mmi_17030405.x'>10.1111/j.1365-2958.1995.mmi_17030405.x</ext-link>

[2] R. Silber, V. G. Malathi, J. Hurwitz, “Purification and properties of bacteriophage T4-induced RNA ligase”, Proc. Natl. Acad. Sci. U S A, 69 (1972), 3009–3013 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.69.10.3009'>10.1073/pnas.69.10.3009</ext-link>

[3] L. K. Wang, S. Shuman, “Structure-function analysis of yeast tRNA ligase”, RNA, 11:6 (2005), 966–975 <ext-link ext-link-type='doi' href='https://doi.org/10.1261/rna.2170305'>10.1261/rna.2170305</ext-link>

[4] C. K. Ho, S. Shuman, “Bacteriophage T4 RNA ligase 2 (gp24.1) exemplifies a family of RNA ligases found in all phylogenetic domains”, Proc. Natl. Acad. Sci. U S A, 99 (2002), 12709–12714 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.192184699'>10.1073/pnas.192184699</ext-link>

[5] J. Abelson, C. R. Trotta, H. Li, “tRNA splicing”, The Journal of Biological Chemistry, 273 (1998), 12685–12688 <ext-link ext-link-type='doi' href='https://doi.org/10.1074/jbc.273.21.12685'>10.1074/jbc.273.21.12685</ext-link>

[6] M. Englert, H. Beier, “Plant tRNA ligases are multifunctional enzymes that have diverged in sequence and substrate specificity from RNA ligases of other phylogenetic origins”, Nucleic Acids Research, 33 (2005), 388–399 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gki174'>10.1093/nar/gki174</ext-link>

[7] V. Blanc, J. D. Alfonzo, R. Aphasizhev, L. Simpson, “The mitochondrial RNA ligase from Leishmania tarentolae can join RNA molecules bridged by a complementary RNA”, Journal of Biological Chemistry, 274 (1999), 24289–24296 <ext-link ext-link-type='doi' href='https://doi.org/10.1074/jbc.274.34.24289'>10.1074/jbc.274.34.24289</ext-link>

[8] S. S. Palazzo, A. K. Panigrahi, R. P. Jr. Igo, R. Salavati, K. Stuart, “Kinetoplastid RNA editing ligases: complex association, characterization, and substrate requirements”, Molecular and Biochemical Parasitology, 127 (2003), 161–167 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/s0166-6851(02)00333-x'>10.1016/s0166-6851(02)00333-x</ext-link>

[9] K. Stuart, R. Brun, S. Croft, A. Fairlamb, R. E. Gurtler, J. McKerrow, S. Reed, R. Tarleton, “Kinetoplastids: related protozoan pathogens, different diseases”, J. Clin. Invest, 118 (2008), 1301–1310 <ext-link ext-link-type='doi' href='https://doi.org/10.1172/JCI33945'>10.1172/JCI33945</ext-link>

[10] L. Simpson, A. Da Silva, “Isolation and characterization of kinetoplast DNA from Leishmania tarentolae”, J. Mol. Biol., 56 (1971), 443–473 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0022-2836(71)90394-9'>10.1016/0022-2836(71)90394-9</ext-link>

[11] B. Blum, N. Bakalara, L. Simpson, “A model for RNA editing in kinetoplastid mitochondria: RNA molecules transcribed from maxicircle DNA provide the edited information”, Cell, 60 (1990), 89–198 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0092-8674(90)90735-W'>10.1016/0092-8674(90)90735-W</ext-link>

[12] N. R. Sturm, L. Simpson, “Kinetoplast DNA minicircles encode guide RNAs for editing of cytochrome oxidase subunit III mRNA”, Cell, 61 (1990), 879–884 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0092-8674(90)90198-N'>10.1016/0092-8674(90)90198-N</ext-link>

[13] P. H. Rehse, T. H. Tahirov, “Structure of a putative 2'-5' RNA ligase from Pyrococcus horikoshii”, Acta Crystallographica Section D: Biological Crystallography, 61 (2005), 1207–1212 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/s0907444905017841'>10.1107/s0907444905017841</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2165711'>2165711</ext-link>

[14] K. K. Desai, C. A. Bingman, G. N. Jr. Phillips, R. T. Raines, “Structures of the Noncanonical RNA Ligase RtcB Reveal the Mechanism of Histidine Guanylylation”, Biochemistry, 52 (2013), 2518–2525 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/bi4002375'>10.1021/bi4002375</ext-link>

[15] K. K. Desai, C. L. Cheng, C. A. Bingman, G. N. Jr. Phillips, R. T. Raines, “A tRNA splicing operon: archease endows RtcB with dual GTP/ATP cofactor specificity and accelerates RNA ligation”, Nucleic Acids Research, 42 (2014), 3931–3942 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkt1375'>10.1093/nar/gkt1375</ext-link>

[16] R. Aphasizhev, I. Aphasizheva, “Mitochondrial RNA editing in trypanosomes: small RNAs in control”, Biochimie, 100 (2014), 125–131 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.biochi.2014.01.003'>10.1016/j.biochi.2014.01.003</ext-link>

[17] S. Moreira, E. Noutahi, G. Lamoureux, G. Burger, “Three-dimensional structure model and predicted ATP interaction rewiring of a deviant RNA ligase 2”, BMC Struct. Biol., 15 (2015) <ext-link ext-link-type='doi' href='https://doi.org/10.1186/s12900-015-0046-0'>10.1186/s12900-015-0046-0</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1376.94057'>1376.94057</ext-link>

[18] S. J. Williamson, D. B. Rusch, S. Yooseph, A. L. Halpern, K. B. Heidelberg, J. I. Glass, C. Andrews-Pfannkoch, D. Fadrosh, C. S. Miller, G. Sutton, M. Frazier, J. C. Venter, “The Sorcerer II Global Ocean Sampling Expedition: Metagenomic Characterization of Viruses within Aquatic Microbial Samples”, PLoS One, 3 (2008) <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.pone.0001456'>10.1371/journal.pone.0001456</ext-link>

[19] S. Yooseph, G. Sutton, D. B. Rusch, A. L. Halpern, S. J. Williamson, K. Remington, J. A. Eisen, K. B. Heidelberg, G. Manning, W. Li et al., “The Sorcerer II Global Ocean Sampling expedition: Expanding the universe of protein families”, PLoS Biol, 5 (2007) <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.pbio.0050016'>10.1371/journal.pbio.0050016</ext-link>

[20] S. L. Jorgensen, B. Hannisdal, A. Lanzén, T. Baumberger, K. Flesland, R. Fonseca, L. Ovreås, I. H. Steen, I. H. Thorseth, R. B. Pedersen, C. Schleper, “Correlating microbial community profiles with geochemical data in highly stratified sediments from the Arctic Mid-Ocean Ridge”, Proc. Natl. Acad. Sci. U S A, 109 (2012), E2846–E2855 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.1207574109'>10.1073/pnas.1207574109</ext-link>

[21] T. Brettin, J. J. Davis, T. Disz, R. A. Edwards, S. Gerdes, G. J. Olsen, R. Olson, R. Overbeek, B. Parrello, G. D. Pusch et al., “RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes”, Sci. Rep., 5 (2015), 8365 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/srep08365'>10.1038/srep08365</ext-link>

[22] A. M.Q. King, E. J. Lefkowitz, A. R. Mushegian, M. J. Adams, B. E. Dutilh, A. E. Gorbalenya, B. Harrach, R. L. Harrison, S. Junglen, N. J. Knowles et al, “Changes to taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2018)”, Arch. Virol., 163 (2018), 2601–2631 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s00705-018-3847-1'>10.1007/s00705-018-3847-1</ext-link>

[23] S. Federhen, “The NCBI Taxonomy database”, Nucleic Acids Res., 40 (2012), D136–D143 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkr1178'>10.1093/nar/gkr1178</ext-link>

[24] D. A. Benson, M. Cavanaugh, K. Clark, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, E. W. Sayers, “GenBank”, Nucleic Acids Res, 41 (2013), D36–D42 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gks1195'>10.1093/nar/gks1195</ext-link>

[25] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, D. J. Lipman, “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs”, Nucleic Acids Res., 25 (1997), 3389–3402 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/25.17.3389'>10.1093/nar/25.17.3389</ext-link>

[26] D. T. Jones, W. R. Taylor, J. M. Thornton, “The rapid generation of mutation data matrices from protein sequences”, Computer Applications in the Biosciences, 8 (1992), 275–282 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/bioinformatics/8.3.275'>10.1093/bioinformatics/8.3.275</ext-link>

[27] J. Felsenstein, “Confidence limits on phylogenies: An approach using the bootstrap”, Evolution, 39 (1985), 783–791 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/j.1558-5646.1985.tb00420.x'>10.1111/j.1558-5646.1985.tb00420.x</ext-link>

[28] S. Kumar, G. Stecher, M. Li, C. Knyaz, K. Tamura, “MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms”, Molecular Biology and Evolution, 35 (2018), 1547–1549 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/molbev/msy096'>10.1093/molbev/msy096</ext-link>

[29] T. Cavalier-Smith, “Kingdom Chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences”, Protoplasma, 255 (2018), 297–357 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s00709-017-1147-3'>10.1007/s00709-017-1147-3</ext-link>

[30] R. C. Edgar, “MUSCLE: multiple sequence alignment with high accuracy and high throughput”, Nucleic Acids Res., 32 (2004), 1792–1797 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkh340'>10.1093/nar/gkh340</ext-link>

[31] M. A. Larkin, G. Blackshields, N. P. Brown, R. Chenna, P. A. McGettigan, H. McWilliam, F. Valentin, I. M. Wallace, A. Wilm, R. Lopez, J. D. Thompson, T. J. Gibson, D. G. Higgins, “ClustalW and ClustalX version 2.0”, Bioinformatics, 23 (2007), 2947–2948 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/bioinformatics/btm404'>10.1093/bioinformatics/btm404</ext-link>