Determination of the structure of biological macromolecular particles using X-ray lasers. Achievements and prospects
Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020), pp. t52-t87.

Voir la notice de l'article provenant de la source Math-Net.Ru

X-ray diffraction analysis is the main experimental approach to the determination of the atomic structure of biological macromolecules and their complexes. The most serious limitation of its applicability, which is caused by the extremely low intensity of the rays scattered by a single molecule, today, is the necessity to prepare a sample of the object under study in the form of a single crystal. The commissioning of X-ray free-electron lasers with their super-powerful (by many orders of magnitude exceeding the brightness of modern synchrotrons) and ultra-short (less than 100 fs) pulses is an experimental breakthrough, which allows us to expect to obtain diffraction patterns from individual biological particles and determine their structure. The first experimental results demonstrate the proof-of-principle of the approach and are accompanied by the publication of a large number of articles devoted to various aspects of the development of the method. The purpose of this review is to describe the current state of art in this area, evaluate the results achieved, and discuss the prospects for further development of the method based on the analysis of articles in the world scientific literature published in recent years and the experience of the authors and their colleagues.
@article{MBB_2020_15_a4,
     author = {T. E. Petrova and V. Yu. Lunin},
     title = {Determination of the structure of biological macromolecular particles using {X-ray} lasers. {Achievements} and prospects},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {t52--t87},
     publisher = {mathdoc},
     volume = {15},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2020_15_a4/}
}
TY  - JOUR
AU  - T. E. Petrova
AU  - V. Yu. Lunin
TI  - Determination of the structure of biological macromolecular particles using X-ray lasers. Achievements and prospects
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2020
SP  - t52
EP  - t87
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2020_15_a4/
LA  - en
ID  - MBB_2020_15_a4
ER  - 
%0 Journal Article
%A T. E. Petrova
%A V. Yu. Lunin
%T Determination of the structure of biological macromolecular particles using X-ray lasers. Achievements and prospects
%J Matematičeskaâ biologiâ i bioinformatika
%D 2020
%P t52-t87
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2020_15_a4/
%G en
%F MBB_2020_15_a4
T. E. Petrova; V. Yu. Lunin. Determination of the structure of biological macromolecular particles using X-ray lasers. Achievements and prospects. Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020), pp. t52-t87. http://geodesic.mathdoc.fr/item/MBB_2020_15_a4/

[1] V.Y. Lunin, N.L. Lunina, T.E. Petrova, “Single Particle Study by X-Ray Diffraction: Crystallographic Approach”, Math. Biol. Bioinf., 14:2 (2019), 500–516 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2019.14.500'>10.17537/2019.14.500</ext-link>

[2] L.D. Landau, E.M. Lifshitz, Mechanics, 3d edition, Butterworth-Heinemann, 1976, 224 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=416142'>416142</ext-link>

[3] L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields, 4th edition, Butterworth-Heinemann, 1980, 402 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=43598'>43598</ext-link>

[4] A. G. Urzhumtsev, V. Y. Lunin, “Introduction to crystallographic refinement of macromolecular atomic models”, Crystallography Reviews, 25 (2019), 164–262 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/0889311X.2019.1631817'>10.1080/0889311X.2019.1631817</ext-link>

[5] T.L. Blundell, L.N. Johnson, Protein Crystallography, Academic Press, 1976, 620 pp.

[6] I.N. Serdyuk, N.R. Zacccai, J. Zacccai, Methods in Molecular Biophysics: Structure, Dynamics, Function, 2-nd edition, Cambridge University Press, 2017, 702 pp.

[7] B. Rupp, Biomolecular Crystallography: Principles, Practice, and Applications to Structural Biology, Garland Science, Taylor and Francis Group, New York, 2010, xxi+809 pp.

[8] L. Urzhumtseva, B. Klaholz, A. Urzhumtsev, “On effective and optical resolutions of diffraction data sets”, Acta Crystallographica D, 69 (2013), 1921–1934 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0907444913016673'>10.1107/S0907444913016673</ext-link>

[9] M. Van Heel, M. Schatz, “Fourier shell correlation threshold criteria”, J. Struct. Biol., 151 (2005), 250–262 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jsb.2005.05.009'>10.1016/j.jsb.2005.05.009</ext-link>

[10] M. Van Heel, M. Schatz, Reassessing the Revolution's Resolutions, bioRxiv, No 224402, 2017 <ext-link ext-link-type='doi' href='https://doi.org/10.1101/224402'>10.1101/224402</ext-link>

[11] E. Sobolev, S. Zolotarev, K. Giewekemeyer, J. Bielecki, K. Okamoto, H. K. N. Reddy, J. Andreasson, K. Ayyer, I. Barak, S. Bari et al., “Megahertz single-particle imaging at the European XFEL”, Communications Physics, 3 (2020), 97 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s42005-020-0362-y'>10.1038/s42005-020-0362-y</ext-link>

[12] I. Georgescu, “The first decade of XFELs”, Nature Reviews Physics, 2 (2020), 345 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s42254-020-0204-6'>10.1038/s42254-020-0204-6</ext-link>

[13] G. Margaritondo, P. R. Ribič, “A simplified description of X-ray free-electron lasers”, J. Synchrotron Radiation, 18 (2011), 101–108 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S090904951004896X'>10.1107/S090904951004896X</ext-link>

[14] C. Pellegrini, “The history of X-ray free-electron lasers”, Eur. Phys. J. H, 37 (2012), 659–708 <ext-link ext-link-type='doi' href='https://doi.org/10.1140/epjh/e2012-20064-5'>10.1140/epjh/e2012-20064-5</ext-link>

[15] T. A. White, V. Mariani, W. Brehm, O. Yefanov, A. Barty, K. R. Beyerlein, F. Chervinskii, L. Galli, C. Gati, T. Nakane et al, “Recent developments in CrystFEL”, J. Appl. Cryst., 49 (2016), 680–689 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S1600576716004751'>10.1107/S1600576716004751</ext-link>

[16] H. N. Chapman, P. Fromme, A. Barty, T. A. White, R. A. Kirian, A. Aquila, M. S. Hunter, J. Schulz, D. P. DePonte, U. Weierstall et al, “Femtosecond X-ray protein nanocrystallography”, Nature, 470 (2011), 73–77 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nature09750'>10.1038/nature09750</ext-link>

[17] S. Boutet, L. Lomb, G. J. Williams, T. R. Barends, A. Aquila, R. B. Doak, U. Weierstall, D. P. DePonte, J. Steinbrener, R. L. Shoeman et al, “High-resolution protein structure determination by serial femtosecond crystallography”, Science, 337 (2012), 362–364 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.1217737'>10.1126/science.1217737</ext-link>

[18] J. Kern, R. Alonso-Mori, J. Hellmich, R. Tran, J. Hattne, H. Laksmono, C. Glöckner, N. Echols, R. G. Sierra, J. Sellberg et al, “Room temperature femtosecond X-ray diffraction of photosystem II microcrystals”, Proc. Natl. Acad. Sci. USA, 109 (2012), 9721–9726 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.1204598109'>10.1073/pnas.1204598109</ext-link>

[19] C. Kupitz, S. Basu, I. Grotjohann, R. Fromme, N. A. Zatsepin, K. N. Rendek, M. S. Hunter, R. L. Shoeman, T. A. White, D. Wang et al, “Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser”, Nature, 513 (2014), 261–265 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nature13453'>10.1038/nature13453</ext-link>

[20] R. G. Sierra, C. Gati, H. Laksmono, E. H. Dao, S. Gul, F. Fuller, J. Kern, R. Chatterjee, M. Ibrahim, A. S. Brewster et al, “Concentric-flow electrokinetic injector enables serial crystallography of ribosome and photosystem II”, Nat. Methods, 13 (2016), 59–62 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nmeth.3667'>10.1038/nmeth.3667</ext-link>

[21] W. Liu, D. Wacker, C. Gati, G. W. Han, D. James, D. Wang, G. Nelson, U. Weierstall, V. Katritch, A. Barty et al, “Serial femtosecond crystallography of G protein-coupled receptors”, Science, 342 (2013), 1521–1524 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.1244142'>10.1126/science.1244142</ext-link>

[22] Y. Kang, X. E. Zhou, X. Gao, Y. He, W. Liu, A. Ishchenko, A. Barty, T. A. White, O. Yefanov, G. W. Han et al, “Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser”, Nature, 523 (2015), 561–567 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nature14656'>10.1038/nature14656</ext-link>

[23] L. C. Johansson, D. Arnlund, T. A. White, G. Katona, D. P. DePonte, U. Weierstall, R. B. Doak, R. L. Shoeman, L. Lomb, E. Malmerberg et al, “Lipidic phase membrane protein serial femtosecond crystallography”, Nat. Methods, 9 (2012), 263–265 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nmeth.1867'>10.1038/nmeth.1867</ext-link>

[24] L. C. Johansson, D. Arnlund, G. Katona, T. A. White, A. Barty, D. P. DePonte, R. L. Shoeman, C. Cecilia Wickstrand, A. Sharma, G. J. Williams et al, “Structure of a photosynthetic reaction centre determined by serial femtosecond crystallography”, Nat. Commun., 4 (2013), 2911 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/ncomms3911'>10.1038/ncomms3911</ext-link>

[25] U. Weierstall, D. James, C. Wang, T. A. White, D. Wang, W. Liu, J. C.H. Spence, R. B. Doak, G. Nelson, P. Fromme et al, “Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography”, Nat. Commun., 5 (2014), 3309 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/ncomms4309'>10.1038/ncomms4309</ext-link>

[26] C. Gati, D. Oberthuer, O. Yefanov, R. D. Bunker, F. Stellato, E. Chiu, S. M. Yeh, A. Aquila, S. Basu, R. Bean et al, “Atomic structure of granulin determined from native nanocrystalline granulovirus using an X-ray free-electron laser”, Proc. Natl. Acad. Sci. USA, 114 (2017), 2247–2252 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.1609243114'>10.1073/pnas.1609243114</ext-link>

[27] M. L. Grünbein, J. Bielecki, A. Gorel, M. Stricker, R. Bean, M. Cammarata, K. Dörner, L. Fröhlich, E. Hartmann, S. Hauf et al, “Megahertz data collection from protein microcrystals at an X-ray free-electron laser”, Nat. Commun., 9 (2018), 3487 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41467-018-05953-4'>10.1038/s41467-018-05953-4</ext-link>

[28] M. O. Wiedorn, D. Oberthür, R. Bean, R. Schubert, N. Werner, B. Abbey, M. Aepfelbacher, L. Adriano, A. Allahgholi, N. Al-Qudami et al, “Megahertz serial crystallography”, Nat. Commun., 9 (2018), 4025 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41467-018- 06156-7'>10.1038/s41467-018- 06156-7</ext-link>

[29] C. Gisriel, J. Coe, R. Letrun, O. M. Yefanov, C. Luna-Chavez, N. E. Stander, S. Lisova, V. Mariani, M. Kuhn, S. Aplin et al, “Membrane protein megahertz crystallography at the European XFEL”, Nat. Commun., 10 (2019), 5021 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41467-019-12955-3'>10.1038/s41467-019-12955-3</ext-link>

[30] J. M. Glownia, J. Cryan, J. Andreasson, A. Belkacem, N. Berrah, C. Blaga, C. Bostedt, J. Bozek, L. DiMauro, L. Fang et al, “Time-resolved pump-probe experiments at the LCLS”, Opt. Express, 18 (2010), 17620–17630 <ext-link ext-link-type='doi' href='https://doi.org/10.1364/OE.18.017620'>10.1364/OE.18.017620</ext-link>

[31] A. Aquila, M. S. Hunter, R. B. Doak, R. A. Kirian, P. Fromme, T. A. White, J. Andreasson, D. Arnlund, S. Bajt, T. R. M. Barends et al, “Time-resolved protein nanocrystallography using an X-ray free-electron laser”, Opt. Express, 20 (2012), 2706–2716 <ext-link ext-link-type='doi' href='https://doi.org/10.1364/OE.20.002706'>10.1364/OE.20.002706</ext-link>

[32] J. Tenboer, S. Basu, N. Nadia Zatsepin, K. Pande, D. Milathianaki, M. Frank, M. Hunter, S. Boutet, G. J. Williams, J. E. Koglin et al, “Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein”, Science, 346 (2014), 1242–1246 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.1259357'>10.1126/science.1259357</ext-link>

[33] T. R. Barends, L. Foucar, A. Ardevol, K. Nass, A. Aquila, S. Botha, R. B. Doak, K. Falahati, E. Hartmann, M. Hilpert et al, “Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation”, Science, 350 (2015), 445–450 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.aac5492'>10.1126/science.aac5492</ext-link>

[34] K. Pande, C. D. M. Hutchison, G. Groenhof, A. Aquila, J. S. Robinson, J. Tenboer, S. Basu, S. Boutet, D. P. DePonte, M. Liang et al, “Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein”, Science, 352 (2016), 725–729 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.aad5081'>10.1126/science.aad5081</ext-link>

[35] M. Kubo, E. Nango, K. Tono, T. Kimura, S. Owada, C. Song, F. Mafuné, K. Miyajima, Y. Takeda, J. Y. Kohno et al, “Nanosecond pump-probe device for time-resolved serial femtosecond crystallography developed at SACLA”, J. Synchrotron Radiat., 24 (2017), 1086–1091 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S160057751701030X'>10.1107/S160057751701030X</ext-link>

[36] S. Pandey, R. Bean, T. Sato, I. Poudyal, J. Bielecki, J. C. Villarreal, O. Yefanov, V. Mariani, T. A. White, C. Kupitz et al, “Time-resolved serial femtosecond crystallography at the European XFEL”, Nat. Methods, 17 (2020), 73–78 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.aad5081'>10.1126/science.aad5081</ext-link>

[37] V.Y. Lunin, N.L. Lunina, T.E. Petrova, “The biological crystallography without crystals”, Mathematical Biology and Bioinformatics, 12 (2017), 55–72 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2017.12.55'>10.17537/2017.12.55</ext-link>

[38] R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, J. Hajdu, “Potential for biomolecular imaging with femtosecond X-ray pulses”, Nature, 406 (2000), 752–757 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/35021099'>10.1038/35021099</ext-link>

[39] J. P. Cryan, J. M. Glownia, J. Andreasson, A. Belkacem, N. Berrah, C. I. Blaga, C. Bostedt, J. Bozek, C. Buth, L. F. DiMauro et al, “Auger electron angular distribution of double corehole states in the molecular reference frame”, Phys. Rev. Lett., 105 (2010), 083004 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevLett.105.083004'>10.1103/PhysRevLett.105.083004</ext-link>

[40] H. N. Chapman, O. M. Yefanov, K. Ayyer, T. A. White, A. Barty, A. Morgan, V. Mariani, D. Oberthuer, K. Pande, “Continuous diffraction of molecules and disordered molecular crystals”, J. Appl. Crystallogr., 50 (2017), 1084–1103 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S160057671700749X'>10.1107/S160057671700749X</ext-link>

[41] S. P. Hau-Riege, R. A. London, A. Szoke, “Dynamics of biological molecules irradiated by short x-ray pulses”, Phys. Rev. E. Stat. Nonlin. Soft Matter Phys., 69 (2004), 051906 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevE.69.051906'>10.1103/PhysRevE.69.051906</ext-link>

[42] U. Lorenz, N. M. Kabachnik, E. Weckert, I. A. Vartanyants, “Impact of ultrafast electronic damage in single particle x-ray imaging experiments”, Phys. Rev. E. Stat. Nonlin. Soft Matter Phys., 86 (2012), 051911 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevE.86.051911'>10.1103/PhysRevE.86.051911</ext-link>

[43] B. Ziaja, Z. Jurek, N. Medvedev, V. Saxena, S.-K. Son, R. Santra, “Towards Realistic Simulations of Macromolecules Irradiated under the Conditions of Coherent Diffraction Imaging with an X-ray Free-Electron Laser”, Photonics, 2 (2015), 256–269 <ext-link ext-link-type='doi' href='https://doi.org/10.3390/photonics2010256'>10.3390/photonics2010256</ext-link>

[44] T. Kai, K. Moribayashi, “Effects of electron-impact ionization on the damage to biomolecules irradiated by XFEL”, Journal of Physics: Conference Series, 163 (2009), 012035 <ext-link ext-link-type='doi' href='https://doi.org/10.1088/1742-6596/163/1/012035'>10.1088/1742-6596/163/1/012035</ext-link>

[45] B. Ziaja, R. B. de Castro Antonio, E. Weckert, T. Moeller, “Modelling dynamics of samples exposed to free-electron-laser radiation with Boltzmann equations”, Eur. Phys. J., 40 (2006), 465–480 <ext-link ext-link-type='doi' href='https://doi.org/10.1140/epjd/e2006-00240-x'>10.1140/epjd/e2006-00240-x</ext-link>

[46] C. Fortmann-Grote, A. Buzmakov, Z. Jurek, N. D. Loh, L. Samoylova, R. Santra, E. A. Schneidmiller, T. Tschentscher, S. Yakubov, C. H. Yoon et al, “Start-to-end simulation of single-particle imaging using ultra-short pulses at the European X-ray FreeElectron Laser”, IUCrJ., 4 (2017), 560–568 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S2052252517009496'>10.1107/S2052252517009496</ext-link>

[47] C. Caleman, M. Bergh, H. A. Scott, J. C. Spence, H. N. Chapman, N. Tîmneanu, “Simulations of radiation damage in biomolecular nanocrystals induced by femtosecond X-ray pulses”, J. Mod. Opt., 58 (2011), 1486–1497 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/09500340.2011.597519'>10.1080/09500340.2011.597519</ext-link>

[48] S. P. Hau-Riege, “Nonequilibrium electron dynamics in materials driven by high-intensity x-ray pulses”, Phys. Rev. E, 87 (2013), 053102 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevE.87.053102'>10.1103/PhysRevE.87.053102</ext-link>

[49] B. Akça, S. Erzeneoğlu, “The Mass Attenuation Coefficients, Electronic, Atomic, and Molecular Cross-Sections, Effective Atomic Numbers, and Electron Densities for Compounds of Some Biomedically Important Elements at 59.5 keV”, Science and Technology of Nuclear Installations, 2014, 901465 <ext-link ext-link-type='doi' href='https://doi.org/10.1155/2014/901465'>10.1155/2014/901465</ext-link>

[50] O. B. Zeldin, M. Gerstel, E. F. Garman, “RADDOSE-3D: time- and space-resolved modelling of dose in macromolecular crystallography”, J. Appl. Cryst., 46 (2013), 1225–1230 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0021889813011461'>10.1107/S0021889813011461</ext-link>

[51] C. S. Bury, C. Brooks-Bartlett, S. P. Walsh, E. F. Garman, “Estimate your dose: RADDOSE-3D”, Protein Sci., 27 (2018), 217–228 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/pro.3302'>10.1002/pro.3302</ext-link>

[52] J. L. Dickerson, P. T. N. McCubbin, E. F. Garman, “RADDOSE-XFEL: femtosecond timeresolved dose estimates for macromolecular X-ray free-electron laser experiments”, J. Appl. Cryst., 53 (2020), 549–560 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S1600576720000643'>10.1107/S1600576720000643</ext-link>

[53] R. L. Owen, E. Rudino-Pinera, E. F. Garman, “Experimental determination of the radiation dose limit for cryocooled protein crystals”, Proc. Natl. Acad. Sci. USA, 103 (2006), 4912–4917 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.0600973103'>10.1073/pnas.0600973103</ext-link>

[54] E. de la Mora, N. Coquelle, C. S. Bury, M. Rosenthal, J. M. Holton, I. Carmichael, E. F. Garman, M. Burghammer, J. P. Colletier, M. Weik, “Radiation damage and dose limits in serial synchrotron crystallography at cryo- and room temperatures”, Proc. Natl. Acad. Sci. USA, 117 (2020), 4142–4151 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.1821522117'>10.1073/pnas.1821522117</ext-link>

[55] B. Huang, M. Bates, X. Zhuang, “Super-resolution fluorescence microscopy”, Annu. Rev. Biochem., 78 (2009), 993–1016 <ext-link ext-link-type='doi' href='https://doi.org/10.1146/annurev.biochem.77.061906.092014'>10.1146/annurev.biochem.77.061906.092014</ext-link>

[56] J. A. Rodriguez, R. Xu, C. C. Chen, Z. Huang, H. Jiang, A. L. Chen, K. S. Raines, A. Pryor Jr, D. Nam, L. Wiegart et al, “Three-dimensional coherent X-ray diffractive imaging of whole frozen-hydrated cells”, IUCrJ, 2 (2015), 575–583 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S205225251501235X'>10.1107/S205225251501235X</ext-link>

[57] M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao et al, “An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy”, J. Electron Spectrosc. Relat. Phenom., 170 (2009), 4–12 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.elspec.2008.10.008'>10.1016/j.elspec.2008.10.008</ext-link>

[58] T. Kimura, Y. Joti, A. Shibuya, C. Song, S. Kim, K. Tono, M. Yabashi, M. Tamakoshi, T. Moriya, T. Oshima et al, “Imaging live cell in micro-liquid enclosure by X-ray laser diffraction”, Nat. Commun., 5 (2014), 3052 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/ncomms4052'>10.1038/ncomms4052</ext-link>

[59] D. Borek, M. Cymborowski, M. Machius, W. Minor, Z. Otwinowski, “Diffraction data analysis in the presence of radiation damage”, Acta Crystallogr D, 66 (2010), 426–436 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0907444909040177'>10.1107/S0907444909040177</ext-link>

[60] M. A. Warkentin, H. Atakisi, J. B. Hopkins, D. Walko, R. E. Thorn, “Lifetimes and spatiotemporal response of protein crystals in intense X-ray microbeams”, IUCrJ, 4 (2017), 785–794 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S2052252517013495'>10.1107/S2052252517013495</ext-link>

[61] L. Lomb, T. R.M. Barends, S. Kassemeyer, A. Aquila, S. W. Epp, B. Erk, L. Foucar, R. Hartmann, B. Rudek, D. Rolles et al, “Radiation damage in protein serial femtosecond crystallography using an x-ray free-electron laser”, Phys. Rev. B. Condens. Matter Mater. Phys., 84 (2011), 214111 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevB.84.214111'>10.1103/PhysRevB.84.214111</ext-link>

[62] L. Young, E. P. Kanter, B. Krässig, Y. Li, A. M. March, S. T. Pratt, R. Santra, S. H. Southworth, N. Rohringer, L. F. Dimauro et al, “Femtosecond electronic response of atoms to ultra-intense X-rays”, Nature, 466 (2010), 56–61 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nature09177'>10.1038/nature09177</ext-link>

[63] B. Erk, D. Rolles, L. Foucar, B. Rudek, S. W. Epp, M. Cryle, C. Bostedt, S. Schorb, J. Bozek, A. Rouzee et al, “Ultrafast charge rearrangement and nuclear dynamics upon inner-shell multiple ionization of small polyatomic molecules”, Phys. Rev. Lett., 110 (2013), 053003 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevLett.110.053003'>10.1103/PhysRevLett.110.053003</ext-link>

[64] H. Fukuzawa, S. K. Son, K. Motomura, S. Mondal, K. Nagaya, S. Wada, X. J. Liu, R. Feifel, T. Tachibana, Y. Ito et al, “Deep inner-shell multiphoton ionization by intense X-ray free-electron laser pulses”, Phys. Rev. Lett., 110 (2013), 173005 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevLett.110.173005'>10.1103/PhysRevLett.110.173005</ext-link>

[65] A. Rudenko, L. Inhester, K. Hanasaki, X. Li, S. J. Robatjazi, B. Erk, R. Boll, K. Toyota, Y. Hao, O. Vendrell et al, “Femtosecond response of polyatomic molecules to ultra-intense hard X-rays”, Nature, 546 (2017), 129–132 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nature22373'>10.1038/nature22373</ext-link>

[66] T. Takanashi, K. Nakamura, E. Kukk, K. Motomura, H. Fukuzawa, K. Nagaya, S. I. Wada, Y. Kumagai, D. Iablonskyi, Y. Ito et al, “Ultrafast Coulomb explosion of a diiodomethane molecule induced by an X-ray free-electron laser pulse”, Phys. Chem. Chem. Phys., 19 (2017), 19707–19721 <ext-link ext-link-type='doi' href='https://doi.org/10.1039/C7CP01669G'>10.1039/C7CP01669G</ext-link>

[67] K. Motomura, H. Fukuzawa, S. K. Son, S. Mondal, T. Tachibana, Y. Ito, M. Kimura, K. Nagaya, T. Sakai, K. Matsunami, “Sequential multiphoton multiple ionization of atomic argon and xenon irradiated by x-ray free-electron laser pulses from SACLA”, J. Phys. B, 46 (2013), 164024 <ext-link ext-link-type='doi' href='https://doi.org/10.1088/0953-4075/46/16/164024'>10.1088/0953-4075/46/16/164024</ext-link>

[68] H. Fukuzawa, T. Takanashi, E. Kukk, K. Motomura, S. I. Wada, K. Nagaya, Y. Ito, T. Nishiyama, C. Nicolas, Y. Kumagai et al, “Real-time observation of X-ray-induced intramolecular and interatomic electronic decay in CH2I2”, Nat. Commun., 10 (2019), 2186 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41467-019-10060-z'>10.1038/s41467-019-10060-z</ext-link>

[69] M. Wallner, J. H. D. Eland, R. J. Squibb, J. Andersson, A. H. Roos, R. Singh, O. Talaee, D. Koulentianos, M. N. Piancastelli, M. Simon et al, “Coulomb explosion of CD3I induced by single photon deep inner-shell ionization”, Sci. Rep., 1 (2020), 1246 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41598-020-58251-9'>10.1038/s41598-020-58251-9</ext-link>

[70] B. F. Murphy, T. Osipov, Z. Jurek, L. Fang, S. K. Son, M. Mucke, J. H. Eland, V. Zhaunerchyk, R. Feifel, L. Avaldi et al, “Femtosecond X-ray-induced explosion of at extreme intensity”, Nat. Commun., 5 (2014), 60 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/ncomms5281'>10.1038/ncomms5281</ext-link>

[71] N. Berrah, A. Sanchez-Gonzalez, Z. Jurek, H. Xiong, R. Obaid, R. J. Squibb, T. Osipov, A. Lutman, L. Fang, T. Barillot et al, “Author Correction: Femtosecond-resolved observation of the fragmentation of buckminsterfullerene following X-ray multiphoton ionization”, Nat. Phys., 15 (2019), 1301 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41567-019-0706-2'>10.1038/s41567-019-0706-2</ext-link>

[72] K. Nass, L. Foucar, T. R. M. Barends, E. Hartmann, S. Botha, R. L. Shoeman, R. B. Doak, R. Alonso-Mori, A. Aquila, S. Bajt et al., “Indications of radiation damage in ferredoxin microcrystals using high-intensity X-FEL beams”, J. Synchrotron Rad., 22 (2015), 225–238 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S1600577515002349'>10.1107/S1600577515002349</ext-link>

[73] J. Wang, “Destruction-and-diffraction by X-ray free-electron laser”, Protein Sci., 25 (2016), 1585–1592 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/pro.2959'>10.1002/pro.2959</ext-link>

[74] I. Inoue, Y. Inubushi, T. Sato, K. Tono, T. Katayama, T. Kameshima, K. Ogawa, T. Togashi, S. Owada, Y. Amemiya et al, “Observation of femtosecond X-ray interactions with matter using an X-ray-X-ray pump-probe scheme”, Proc. Natl. Acad. Sci. USA, 113 (2016), 1492–1497 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas'>10.1073/pnas</ext-link>

[75] K. Nass, A. Gorel, M. M. Abdullah, A. V. Martin, M. Kloos, A. Marinelli, A. Aquila, T. R. M. Barends, F. J. Decker, B. Doak et al, “Structural dynamics in proteins induced by and probed with X-ray free-electron laser pulses”, Nat. Commun., 11 (2020), 1814 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41467-020-15610-4'>10.1038/s41467-020-15610-4</ext-link>

[76] N. L. Opara, I. Mohacsi, M. Makita, D. Castano-Diez, A. Diaz, P. Juranić, M. Marsh, A. Meents, C. J. Milne, A. Mozzanica et al, “Demonstration of femtosecond X-ray pump X-ray probe diffraction on protein crystals”, Struct. Dyn., 5 (2018), 054303 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.5050618'>10.1063/1.5050618</ext-link>

[77] A. Munke, J. Andreasson, A. Aquila, S. Awel, K. Ayyer, A. Barty, R. J. Bean, P. Berntsen, J. Bielecki, S. Boutet et al, “Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source”, Sci. Data, 3 (2016), 160064 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/sdata.2016.64'>10.1038/sdata.2016.64</ext-link>

[78] R. P. Kurta, J. J. Donatelli, C. H. Yoon, P. Berntsen, J. Bielecki, B. J. Daurer, H. DeMirci, P. Fromme, M. F. Hantke, F. R.N. C. Maia et al, “Correlations in Scattered X-Ray Laser Pulses Reveal Nanoscale Structural Features of Viruses”, Phys. Rev. Lett., 119 (2017), 158102 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevLett.119.158102'>10.1103/PhysRevLett.119.158102</ext-link>

[79] C. Östlin, N. Tîmneanu, H. O. Jönsson, T. Ekeberg, A. V. Martin, C. Caleman, “Reproducibility of single protein explosions induced by X-ray lasers”, Phys. Chem. Chem. Phys., 20 (2018), 12381–12389 <ext-link ext-link-type='doi' href='https://doi.org/10.1039/c7cp07267h'>10.1039/c7cp07267h</ext-link>

[80] C. Östlin, N. Timneanu, C. Caleman, A. V. Martin, Is radiation damage the limiting factor in high-resolution single particle imaging with X-ray free-electron lasers, Struct. Dyn., 6 (2019), 044103 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.509830'>10.1063/1.509830</ext-link>

[81] K. Nass, “Radiation damage in protein crystallography at X-ray free-electron lasers”, Acta Crystallogr. D. Struct. Biol., 75 (2019), 211–218 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S2059798319000317'>10.1107/S2059798319000317</ext-link>

[82] J. L. Campbell, T. Papp, “Widths of the atomic K-N7 levels”, At. Data Nucl. Data Tables, 77 (2001), 1–56 <ext-link ext-link-type='doi' href='https://doi.org/10.1006/adnd.2000.0848'>10.1006/adnd.2000.0848</ext-link>

[83] S.-K. Son, L. Young, R. Santra, “Impact of hollow-atom formation on coherent x-ray scattering at high intensity”, Phys. Rev. A, 83 (2011), 033402 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevA.83.033402'>10.1103/PhysRevA.83.033402</ext-link>

[84] V. Y. Lunin, A. N. Grum-Grzhimailo, E. V. Gryzlova, D. O. Sinitsyn, T. E. Petrova, N. L. Lunina, N. K. Balabaev, K. B. Tereshkina, A. S. Stepanov, Y. F. Krupyanskii, “Efficient calculation of diffracted intensities in the case of non-stationary scattering by biological macromolecules under XFEL pulse”, Acta Crystallographica D, 71 (2015), 293–303 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S1399004714025450'>10.1107/S1399004714025450</ext-link>

[85] H. N. Chapman, A. Barty, M. Bogan, S. Boutet, M. Frank, S. P. Hau-Riege, S. Marchesini et al, “Femtosecond diffractive imaging with a soft-X-ray free-electron laser”, Nat. Phys., 2 (2006), 839–843 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nphys461'>10.1038/nphys461</ext-link>

[86] M. M. Seibert, T. Ekeberg, F. R. Maia, M. Svenda, J. Andreasson, O. Jönsson, D. Odić, B. Iwan, A. Rocker, D. Westphal et al, “Single mimivirus particles intercepted and imaged with an X-ray laser”, Nature, 470 (2011), 78–81 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nature09748'>10.1038/nature09748</ext-link>

[87] M. F. Hantke, D. Hasse, F. R. N. C. Maia, T. Ekeberg, K. John, M. Svenda, N. D. Loh, A. V. Martin, N. Timneanu, D. S. D. Larsson et al, “High-throughput imaging of heterogeneous cell organelles with an x-ray laser”, Nat. Photonics, 8 (2014), 943–949 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nphoton.2014.27'>10.1038/nphoton.2014.27</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3524375'>3524375</ext-link>

[88] G. van der Schot, M. Svenda, F. R. N. C. Maia, M. Hantke, D. P. DePonte, M. M. Seibert, A. Aquila, J. Schulz, R. Kirian, M. Liang, F. Stellato et al, “Imaging single cells in a beam of live cyanobacteria with an x-ray laser”, Nat. Commun., 6 (2015), 5704 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/ncomms6704'>10.1038/ncomms6704</ext-link>

[89] T. Ekeberg, M. Svenda, C. Abergel, F. R.N. C. Maia, V. Seltzer, J. M. Claverie, M. Hantke, O. Jönsson, C. Nettelblad, G. van der Schot et al, “Three-Dimensional Reconstruction of the Giant Mimivirus Particle with an X-Ray Free-Electron Laser”, Phys. Rev. Lett., 114 (2015), 098102 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevLett.114.098102'>10.1103/PhysRevLett.114.098102</ext-link>

[90] H. K. N. Reddy, C. H. Yoon, A. Aquila, S. Awel, K. Ayyer, A. Barty, P. Berntsen, J. Bielecki, S. Bobkov, M. Bucher, “Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac coherent light source”, Sci. Data, 4 (2017), 170079 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/sdata.2017.79'>10.1038/sdata.2017.79</ext-link>

[91] B. J. Daurer, K. Okamoto, J. Bielecki, F. R. N. C. Maia, K. Muhlig, M. M. Seibert, M. F. Hantke, C. Nettelblad, W. H. Benner, M. Svenda et al., “Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses”, IUCrJ, 4 (2017), 251–262 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S2052252517003591'>10.1107/S2052252517003591</ext-link>

[92] I. V. Lundholm, J. A. Sellberg, T. Ekeberg, M. F. Hantke, K. Okamoto, G. van der Schot, J. Andreasson, A. Barty, J. Bielecki, P. Bruza et al, “Considerations for three-dimensional image reconstruction from experimental data in coherent diffractive imaging”, IUCrJ, 5 (2018), 531–541 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S2052252518010047'>10.1107/S2052252518010047</ext-link>

[93] D. P. DePonte, U. Weierstall, K. Schmidt, J. Warner, D. Starodub, J. C.H. Spence, R. B. Doak, “Gas dynamic virtual nozzle for generation of microscopic droplet streams”, J. Phys. D Appl. Phys., 41 (2008), 195505 <ext-link ext-link-type='doi' href='https://doi.org/10.1088/0022-3727/41/19/195505'>10.1088/0022-3727/41/19/195505</ext-link>

[94] M. Yamashita, J. B. Fenn, “Electrospray ion source. Another variation on the free-jet theme”, J. Phys. Chem., 88 (1984), 4451–4459 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/j150664a002'>10.1021/j150664a002</ext-link>

[95] A. M. Gañan-Calvo, J. M. Montanero, “Revision of capillary cone-jet physics: Electrospray and flow focusing”, Phys. Rev. E, 79 (2009), 066305 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevE.79.066305'>10.1103/PhysRevE.79.066305</ext-link>

[96] M. F. Hantke, J. Bielecki, O. Kulyk, D. Westphal, D. S.D. Larsson, M. Svenda, H. K.N. Reddy, R. A. Kirian, J. Andreasson, J. Hajdu et al, “Rayleigh-scattering microscopy for tracking and sizing nanoparticles in focused aerosol beams”, IUCrJ, 5 (2018), 673–680 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S2052252518010837'>10.1107/S2052252518010837</ext-link>

[97] J. Bielecki, M. F. Hantke, B. J. Daurer, H. K. N. Reddy, D. Hasse, D. S.D. Larsson, L. H. Gunn, M. Svenda, A. Munke, J. A. Sellberg et al, “Electrospray sample injection for single-particle imaging with x-ray lasers”, Sci. Adv., 5 (2019), eaav8801 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/sciadv.aav8801'>10.1126/sciadv.aav8801</ext-link>

[98] J. Miao, K. O. Hodgson, T. Ishikawa, C. A. Larabell, M. A. LeGros, Y. Nishino, “Imaging whole Escherichia coli bacteria by using single-particle x-ray diffraction”, Proc. Natl. Acad. Sci. USA, 100 (2003), 110–112 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.232691299'>10.1073/pnas.232691299</ext-link>

[99] D. Shapiro, P. Thibault, T. Beetz, V. Elser, M. Howells, C. Jacobsen, J. Kirz, E. Lima, H. Miao, A. M. Neiman et al, “Biological imaging by soft x-ray diffraction microscopy”, Proc. Natl. Acad. Sci. USA, 102 (2005), 15343–15346 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.0503305102'>10.1073/pnas.0503305102</ext-link>

[100] C. Song, K. Tono, J. Park, T. Ebisu, S. Kim, H. Shimada, S. Kim, M. Gallagher-Jones, D. Nam, T. Sato et al, “Multiple application X-ray imaging chamber for single-shot diffraction experiments with femtosecond X-ray laser pulses”, J. Appl. Cryst., 47 (2014), 188–197 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S1600576713029944'>10.1107/S1600576713029944</ext-link>

[101] I. Robinson, J. Schwenke, M. Yusuf, A. Estandarte, F. Zhang, B. Chen, J. Clark, Ch. Song, D. Nam, Y. Joti et al, “Towards single particle imaging of human chromosomes at SACLA”, J. Phys. B: At. Mol. Opt. Phys., 48 (2015), 244007 <ext-link ext-link-type='doi' href='https://doi.org/10.1088/0953-4075/48/24/244007'>10.1088/0953-4075/48/24/244007</ext-link>

[102] C. Seuring, K. Ayyer, E. Filippaki, M. Barthelmess, J. N. Longchamp, P. Ringler, T. Pardini, D. H. Wojtas, M. A. Coleman, K. Dörner et al, “Femtosecond X-ray coherent diffraction of aligned amyloid fibrils on low background graphene”, Nat. Commun., 9 (2018), 1836 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41467-018-04116-9'>10.1038/s41467-018-04116-9</ext-link>

[103] Y. Takayama, K. Yonekura, “Cryogenic coherent X-ray diffraction imaging of biological samples at SACLA: a correlative approach with cryo-electron and light microscopy”, Acta Crystallogr. A, 72 (2016), 179–189 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S2053273315023980'>10.1107/S2053273315023980</ext-link>

[104] M. Altarelli, “The European X-ray free-electron laser facility in Hamburg”, Nucl. Instrum. Methods. Phys. Res. B, 269 (2011), 2845–2849 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.nimb.2011.04.034'>10.1016/j.nimb.2011.04.034</ext-link>

[105] B. von Ardenne, M. Mechelke, H. Grubmüller, “Structure determination from single molecule X-ray scattering with three photons per image”, Nat. Commun., 9 (2018), 2375 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41467-018-04830-4'>10.1038/s41467-018-04830-4</ext-link>

[106] A. Allahgholi, J. Becker, L. Bianco, R. Bradford, A. Delfs, R. Dinapoli, P. Goettlicher, M. Gronewald, H. Graafsma, D. Greiffenberg et al, “The adaptive gain integrating pixel detector”, J. Instrum., 11 (2016), 02066 <ext-link ext-link-type='doi' href='https://doi.org/10.1088/1748-0221/11/02/C02066'>10.1088/1748-0221/11/02/C02066</ext-link>

[107] D. Mezza, A. Allahgholi, G. Arino-Estrada, L. Bianco, A. Delfs, R. Dinapoli, P. Goettlicher, H. Graafsma, D. Greiffenberg, H. Hirsemann et al, “Characterization of AGIPD1.0: the full scale chip”, Nucl. Instrum. Methods Phys. Res. A, 838 (2016), 39–46 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.nima.2016.09.007'>10.1016/j.nima.2016.09.007</ext-link>

[108] A. Allahgholi, J. Becker, A. Delfs, R. Dinapoli, P. Goettlicher, D. Greiffenberg, B. Henrich, H. Hirsemann, M. Kuhn, R. Klanner et al, “The Adaptive Gain Integrating Pixel Detector at the European XFEL”, J. Synchrotron Radiat., 26 (2019), 74–82 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S1600577518016077'>10.1107/S1600577518016077</ext-link>

[109] H. T. Philipp, M. Hromalik, M. Tate, L. Koerner, S. M. Gruner, “Pixel array detector for Xray free electron laser experiments”, Nucl. Instrum. Methods Phys. Res. A, 649 (2011), 67–69 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.nima.2010.11.189'>10.1016/j.nima.2010.11.189</ext-link>

[110] G. Blaj, P. Caragiulo, G. Carini, A. Dragone, G. Haller, P. Hart, J. Hasi, R. Herbst, C. Kenney, B. Markovic et al, “Future of ePix detectors for high repetition rate FELs”, AIP Conference Proceedings, 1741 (2016), 040012 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.495288'>10.1063/1.495288</ext-link>

[111] F. Leonarski, S. Redford, A. Mozzanica, C. Lopez-Cuenca, E. Panepucci, K. Nass, D. Ozerov, L. Vera, V. Olieric, D. Buntschu et al, “Fast and accurate data collection for macromolecular crystallography using the JUNGFRAU detector”, Nat. Methods, 15 (2018), 799–804 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41592-018-0143-7'>10.1038/s41592-018-0143-7</ext-link>

[112] S. Redford, A. Bergamaschi, M. Brückner, S. Cartier, R. Dinapoli, Y. Ekinci, E. Fröjdh, D. Greiffenberg, D. Mayilyan, D. Mezza et al, “Calibration status and plans for the charge integrating JUNGFRAU pixel detector for SwissFEL”, J. Instrum., 11 (2016), 11013 <ext-link ext-link-type='doi' href='https://doi.org/10.1088/1748-0221/11/11/C11013'>10.1088/1748-0221/11/11/C11013</ext-link>

[113] P. Goettlicher, A. Allahgholi, J. Becker, L. Bianco, A. Delfs, R. Dinapoli, E. Fretwurst, E. Fretwurst, H. Graafsma, D. Greiffenberg et al, “AGIPD, the electronics for a high speed X-ray imager at the Eu-XFEL”, Proceedings of TIPP2014 — Technology and Instrumentation in Particle Physic, 2014, 253

[114] A. P. Mancuso, A. Aquila, L. Batchelor, R. J. Bean, J. Bielecki, G. Borchers, K. Doerner, K. Giewekemeyer, R. Graceffa, O. D. Kelsey et al, “The Single Particles, Clusters and Biomolecules and Serial Femtosecond Crystallography instrument of the European XFEL: initial installation”, J. Synchrotron Radiat., 26 (2019), 660–676 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S1600577519003308'>10.1107/S1600577519003308</ext-link>

[115] M. Gasthuber, S. Dietrich, J. Malka, M. Kuhn, U. Ensslin, K. Wrona, J. Szuba, “Online & Offline data storage and data processing at the European XFEL facility”, J. Phys.: Conf. Ser., 898 (2017), 062049 <ext-link ext-link-type='doi' href='https://doi.org/10.1088/1742-6596/898/6/062049'>10.1088/1742-6596/898/6/062049</ext-link>

[116] S. Hauf, B. Heisen, S. Aplin, M. Beg, M. Bergemann, V. Bondar, D. Boukhelef, C. Danilevsky, W. Ehsan, S. Essenov et al, “The Karabo distributed control system”, J. Synchrotron Radiat., 26 (2019), 1448–1461 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S1600577519006696'>10.1107/S1600577519006696</ext-link>

[117] H. Fangohr, M. Beg, V. Bondar, D. Boukhelef, S. Brockhauser, C. Danilevski, W. Ehsan, S. G. Esenov, G. Flucke, G. Giovanetti et al, “Data Analysis Support in Karabo at European XFEL”, Proc. 16th Int. Conf. on Accelerator and Large Experimental Control Systems, ICALEPCS-17 (Barcelona, Spain, Oct. 2017), 2018, 245–252 <ext-link ext-link-type='doi' href='https://doi.org/10.18429/JACoW-ICALEPCS2017-TUCPA01'>10.18429/JACoW-ICALEPCS2017-TUCPA01</ext-link>

[118] M. Rose, S. Bobkov, K. Ayyer, R. P. Kurta, D. Dzhigaev, Y. Y. Kim, A. J. Morgan, C. H. Yoon, D. Westphal, J. Bielecki et al, “Single-particle imaging without symmetry constraints at an X-ray free-electron laser”, IUCrJ, 5 (2018), 727–736 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S205225251801120X'>10.1107/S205225251801120X</ext-link>

[119] B. J. Daurer, M. F. Hantke, C. Nettelblad, F. R. N. C. Maia, “Hummingbird: monitoring and analyzing flash X-ray imaging experiments in real time”, J. Appl. Cryst., 49 (2016), 1042–1047 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S1600576716005926'>10.1107/S1600576716005926</ext-link>

[120] A. Barty, R. A. Kirian, F. R. N. C. Maia, M. Hantke, C. H. Yoon, T. A. White, H. Chapman, “Cheetah: software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data”, J. Appl. Cryst., 47 (2014), 1118–1131 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S1600576714007626'>10.1107/S1600576714007626</ext-link>

[121] L. Foucar, A. Barty, N. Coppola, R. Hartmann, P. Holl, U. Hoppe, S. Kassemeyer, N. Kimmel, J. Küpper, Scholz et al, “CASS-CFEL-ASG software suite”, Comput. Phys. Commun., 183 (2012), 2207–2213 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cpc.2012.04.023'>10.1016/j.cpc.2012.04.023</ext-link>

[122] L. Foucar, “CFEL-ASG Software Suite (CASS): usage for free-electron laser experiments with biological focus”, J. Appl Crystallogr., 49 (2016), 1336–1346 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S1600576716009201'>10.1107/S1600576716009201</ext-link>

[123] D. Damiani, M. Dubrovin, I. Gaponenko, W. Kroeger, T. J. Lane, A. Mitra, C. P. O'Grady, A. Salnikov, A. Sanchez-Gonzalez, D. Schneider, C. H. Yoon, “Linac Coherent Light Source data analysis using psana”, J. Appl. Cryst., 49 (2016), 672–679 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S1600576716004349'>10.1107/S1600576716004349</ext-link>

[124] R. R. Coifman, S. Lafon, “Diffusion maps”, Appl. Comput. Harmon. Anal., 21 (2006), 5–30 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.acha.2006.04.006'>10.1016/j.acha.2006.04.006</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2238665'>2238665</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1095.68094'>1095.68094</ext-link>

[125] D. Giannakis, P. Schwander, A. Ourmazd, “The symmetries of image formation by scattering. I. Theoretical framework”, Opt. Express, 20 (2012), 12799–12826 <ext-link ext-link-type='doi' href='https://doi.org/10.1364/OE.20.012799'>10.1364/OE.20.012799</ext-link>

[126] C. H. Yoon, P. Schwander, C. Abergel, I. Andersson, J. Andreasson, A. Aquila, S. Bajt, M. Barthelmess, A. Barty, M. J. Bogan, C. Bostedt, J. Bozek et al, “Unsupervised classification of single-particle X-ray diffraction snapshots by spectral clustering”, Opt. Express, 19 (2011), 16542–16549 <ext-link ext-link-type='doi' href='https://doi.org/10.1364/OE.19.016542'>10.1364/OE.19.016542</ext-link>

[127] K. Giewekemeyer, A. Aquila, N. D. Loh, Y. Chushkin, K. S. Shanks, J. T. Weiss, M. W. Tate, H. T. Philipp, S. Stern, P. Vagovic et al, “Experimental 3D coherent diffractive imaging from photon-sparse random projections”, IUCrJ, 20 (2019), 357–365 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S2052252519002781'>10.1107/S2052252519002781</ext-link>

[128] K. Ayyer, A. J. Morgan, A. Aquila, H. DeMirci, B. G. Hogue, R. A. Kirian, P. L. Xavier, C. H. Yoon, H. N. Chapman, A. Barty, “Low-signal limit of X-ray single particle diffractive imaging”, Opt Express, 27 (2019), 37816–37833 <ext-link ext-link-type='doi' href='https://doi.org/10.1364/OE.27.037816'>10.1364/OE.27.037816</ext-link>

[129] N. D. Loh, V. Elser, “Reconstruction algorithm for single-particle diffraction imaging experiments”, Phys. Rev. E, 80 (2009), 026705 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevE.80.026705'>10.1103/PhysRevE.80.026705</ext-link>

[130] K. Ayyer, Lan Ti-Yen, V. Elser, N. D. Loh, “Dragonfly: an implementation of the expand-maximize-compress algorithm for single-particle imaging”, J. Appl. Crystallogr., 49 (2016), 1320–1335 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S1600576716008165'>10.1107/S1600576716008165</ext-link>

[131] C. H. Yoon, M. V. Yurkov, E. A. Schneidmiller, L. Samoylova, A. Buzmakov, Z. Jurek, B. Ziaja, R. Santra, N. D. Loh, T. Tschentscher et al, “A comprehensive simulation framework for imaging single particles and biomolecules at the European X-ray FreeElectron Laser”, Sci. Rep., 6 (2016), 24791 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/srep24791'>10.1038/srep24791</ext-link>

[132] M. F. Hantke, T. Ekeberg, F. R.H. C. Maia, “A simulation tool for flash X-ray imaging”, J. Appl. Cryst., 49 (2016), 1356–1362 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S1600576716009213'>10.1107/S1600576716009213</ext-link>

[133] V.Y. Lunin, N.L. Lunina, T.E. Petrova, “Mask-Based Approach in Phasing and Restoring of Single-Particle Diffraction Data”, Mathematical Biology and Bioinformatics, 15, Suppl. (2020), t1–t20 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2020.15.t1'>10.17537/2020.15.t1</ext-link>

[134] G. Bricogne, “Geometric sources of redundancy in intensity data and their use for phase determination”, Acta Crystallographica A, 30 (1974), 395–405 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0567739474010722'>10.1107/S0567739474010722</ext-link>

[135] G. Bricogne, “Methods and programs for direct-space exploitation of geometric redundancies”, Acta Crystallographica A, 32 (1976), 832–847 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0567739476001691'>10.1107/S0567739476001691</ext-link>

[136] V. Y. Lunin, “Use of the fast differentiation algorithm for phase refinement in protein crystallography”, Acta Crystallographica A, 41 (1985), 551–556 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0108767385001209'>10.1107/S0108767385001209</ext-link>

[137] A. D. Podjarny, B. Rees, A. G. Urzhumtsev, “Density modification in X-ray crystallography”, Crystallographic Methods and Protocols, Methods in Molecular Biology, 56, eds. Jones C., Milloy B., Sanderson M. R., Humana Press, Totowa, New Jersey, 1996, 205–226 <ext-link ext-link-type='doi' href='https://doi.org/10.1385/0-89603-259-0:205'>10.1385/0-89603-259-0:205</ext-link>

[138] K. Y. J. Zhang, K. D. Cowtan, P. Main, “Phase improvement by iterative density modification”, International Tables for Crystallography, v. F, eds. E. Arnold, D. M. Himmel, M. G. Rossmann, John Wiley and Sons, Chichester, 2012, 385–400 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/97809553602060000847'>10.1107/97809553602060000847</ext-link>

[139] J. R. Fienup, “Reconstruction of an object from the modulus of its Fourier transform”, Optics Letters, 3:1 (1978), 27–29 <ext-link ext-link-type='doi' href='https://doi.org/10.1364/OL.3.000027'>10.1364/OL.3.000027</ext-link>

[140] B. C. Wang, “Resolution of phase ambiguity in macromolecular crystallography”, Methods in Enzymology, 115 (1985), 90–111 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0076-6879(85)15009-3'>10.1016/0076-6879(85)15009-3</ext-link>

[141] J. P. Abrahams, “Bias reduction in phase refinement by modified interference functions: introducing the $\gamma$-correction”, Acta Crystallographica D, 53 (1997), 371–376 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0907444996015272'>10.1107/S0907444996015272</ext-link>

[142] G. Oslányi, A. Sütő, “Ab initio structure solution by charge flipping”, Acta Crystallographica A, 60 (2004), 134–141 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0108767303027569'>10.1107/S0108767303027569</ext-link>

[143] S. Marchesini, “A unified evaluation of iterative projection algorithms for phase retrieval”, Rev. Sci. Instrum., 78 (2007), 011301 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.2403783'>10.1063/1.2403783</ext-link>

[144] F. R. N. C. Maia, T. Ekeberg, D. Spoel, J. Hajdu, “Hawk: the image reconstruction package for coherent X-ray diffractive imaging”, J. Applied Crystallography, 43 (2010), 1535–1539 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0021889810036083'>10.1107/S0021889810036083</ext-link>

[145] R. Millane, V. L. Lo, “Iterative projection algorithms in protein crystallography. I. Theory”, Acta Crystallographica A, 69 (2013), 517–527 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0108767313015249'>10.1107/S0108767313015249</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3103552'>3103552</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1284.05303'>1284.05303</ext-link>

[146] A. G. Urzhumtsev, The use of local averaging in analysis of macromolecule images at electron density distribution maps, Preprint, Pushchino, 1985 (in Russ.)

[147] A. G. Urzhumtsev, V. Y. Lunin, T. B. Luzyanina, “Bounding a Molecule in a Noisy Synthesis”, Acta Crystallographica A, 45 (1989), 34–39 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/s0108767388008955'>10.1107/s0108767388008955</ext-link>

[148] S. Marchesini, H. He, H. N. Chapman, S. P. Hau-Riege, A. Noy, M. R. Howells, U. Weierstall, J. H. C. Spence, “X-ray image reconstruction from a diffraction pattern alone”, Phis. Rev. B, 68 (2003) <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevB.68.140101'>10.1103/PhysRevB.68.140101</ext-link>

[149] V.Y. Lunin, N.L. Lunina, T.E. Petrova, “The use of connected masks for reconstructing the single particle image from X-ray diffraction data”, Mathematical Biology and Bioinformatics, 10, Suppl. (2015), t1–t19 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2015.10.t1'>10.17537/2015.10.t1</ext-link>

[150] V. Y. Lunin, N. L. Lunina, T. E. Petrova, M. W. Baumstark, A. G. Urzhumtsev, “Mask-based approach to phasing of single-particle diffraction data”, Acta Crystallographica D, 72 (2016), 147–157 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S2059798315022652'>10.1107/S2059798315022652</ext-link>

[151] V. Y. Lunin, N. L. Lunina, T. E. Petrova, M. W. Baumstark, A. G. Urzhumtsev, “Mask-based approach to phasing of single-particle diffraction data. II. Likelihood-based selection criteria”, Acta Crystallographica D, 75 (2019), 79–89 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S2059798318016959'>10.1107/S2059798318016959</ext-link>

[152] N.L. Lunina, T.E. Petrova, A.G. Urzhumtsev, V.Y. Lunin, “The use of connected masks for reconstructing the single particle image from X-ray diffraction data. II. The dependence of the accuracy of the solution on the sampling step of experimental data”, Mathematical Biology and Bioinformatics, 10, Suppl. (2015), t56–t72 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2015.10.t56'>10.17537/2015.10.t56</ext-link>

[153] N.L. Lunina, T.E. Petrova, A.G. Urzhumtsev, V.Y. Lunin, “The Use of Connected Masks for Reconstructing the Single Particle Image from X-Ray Diffraction Data. III. Maximum-Likelihood Based Strategies to Select Solution of the Phase Problem”, Mathematical Biology and Bioinformatics, 13 (2018), t70–t83 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2018.13.t70'>10.17537/2018.13.t70</ext-link>

[154] A. P. Mancuso, Th. Gorniak, F. Staier, O. M. Yefanov, R. Barth, C. Christophis, B. Reime, J. Gulden, A. Singer, M. E. Pettit et al, “Coherent imaging of biological samples with femtosecond pulses at the free electron laser FLASH”, New J. Phys., 12 (2010), 035003 <ext-link ext-link-type='doi' href='https://doi.org/10.1088/1367-2630/12/3/035003'>10.1088/1367-2630/12/3/035003</ext-link>

[155] M. M. Seibert, S. Boutet, M. Svenda, T. Ekeberg, F. R. N. C. Maia, M. J. Bogan, N. Nicusor Tîmneanu, A. Anton Barty, S. Stefan Hau-Riege, C. Caleman, “Femtosecond diffractive imaging of biological cells”, J. Phys. B: At. Mol. Opt. Phys., 43 (2010), 194015 <ext-link ext-link-type='doi' href='https://doi.org/10.1088/0953-4075/43/19/194015'>10.1088/0953-4075/43/19/194015</ext-link>

[156] M. Gallagher-Jones, Y. Bessho, S. Kim, J. Park, S. Kim, D. Nam, C. Kim, Y. Kim, Y. Noh do, O. Miyashita et al, “Macromolecular structures probed by combining singleshot free-electron laser diffraction with synchrotron coherent X-ray imaging”, Nat. Commun., 5 (2014), 3798 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/ncomms4798'>10.1038/ncomms4798</ext-link>

[157] R. Xu, H. Jiang, C. Song, J. A. Rodriguez, Z. Huang, C. C. Chen, D. Nam, J. Park, M. Gallagher-Jones, S. Kim et al, “Single-shot three-dimensional structure determination of nanocrystals with femtosecond X-ray free-electron laser pulses”, Nat. Commun., 5 (2014), 4061 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/ncomms5061'>10.1038/ncomms5061</ext-link>

[158] Y. Takayama, Y. Inui, Y. Sekiguchi, A. Kobayashi, T. Oroguchi, M. Yamamoto, S. Matsunaga, M. Nakasako, “Coherent X-Ray Diffraction Imaging of Chloroplasts from Cyanidioschyzon merolae by Using X-Ray Free Electron Laser”, Plant Cell Physiol., 56 (2015), 1272–1286 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/pcp/pcv032'>10.1093/pcp/pcv032</ext-link>

[159] M. Nakano, O. Osamu Miyashita, S. Jonic, A. Tokuhisa, F. Tama, “Single-particle XFEL 3D reconstruction of ribosome-size particles based on Fourier slice matching: requirements to reach subnanometer resolution”, J. Synchrotron Radiat., 25 (2018), 1010–1021 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S1600577518005568'>10.1107/S1600577518005568</ext-link>

[160] F. R. N. C. Maia, “The Coherent X-ray Imaging Data Bank”, Nat. methods, 9 (2012), 854–855 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nmeth.2110'>10.1038/nmeth.2110</ext-link>

[161] J. Fan, Z. Sun, Y. Wang, J. Park, S. Kim, M. Gallagher-Jones, Y. Kim, C. Song, S. Yao, J. Zhang et al, “Single-pulse enhanced coherent diffraction imaging of bacteria with an Xray free-electron laser”, Sci. Rep., 6 (2016), 34008 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/srep34008'>10.1038/srep34008</ext-link>

[162] A. Hosseinizadeh, G. Mashayekhi, J. Copperman, P. Schwander, A. Dashti, R. Sepehr, R. Fung, M. Schmidt, C. H. Yoon, B. G. Hogue et al, “Conformational landscape of a virus by single-particle X-ray scattering”, Nat. Methods, 4 (2017), 877–881 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nmeth.4395'>10.1038/nmeth.4395</ext-link>

[163] A. Aquila, A. Barty, C. Bostedt, S. Boutet, G. Carini, D. dePonte, P. Drell, S. Doniach, K. H. Downing, T. Earnest, “The linac coherent light source single particle imaging road map”, Structural Dynamics, 2 (2015), 041701 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.4918726'>10.1063/1.4918726</ext-link>