Dynamics of predator-prey community with age structures and its changing due to harvesting
Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020), pp. t35-t51.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper studies dynamic modes of discrete-time model of structured predator-prey community like “arctic fox – rodent” and changing its dynamic modes due to interspecific interaction. Possibility of shifting dynamic modes is analyzed. In particularly, 3-cycle emerging in prey population can result in predator extinction. Moreover, this solution corresponding to an incomplete community simultaneously coexists with the solution describing dynamics of complete community, which can be both stable and unstable. The anthropogenic impact on the community dynamics is studied. Anthropogenic impact is realized as a harvest of some part of predator or prey population. It is shown prey harvesting leads to expansion of parameter space domain with non-trivial stable numbers of community populations. In this case, the prey harvest has little effect on the predator dynamics; changes are mainly associated with multistability areas. In particular, the multistability domain narrows, in which changing initial conditions leads to different dynamic regimes, such as the transition to a stable state or periodic oscillations. As a result, community dynamics becomes more predictable. It is shown that the dynamics of prey population is sensitive to its harvesting. Even a small harvest rate results in disappearance of population size fluctuations: the stable state captures the entire phase space in multistability areas. In the case of the predator population harvest, stability domain of the nontrivial fixed point expands along the parameter of the predator birth rate. Accordingly, a case where predator determines the prey population dynamics is possible only at high values of predator reproductive potential. It is shown that in the case of predator harvest, a change in the community dynamic mode is possible as a result of a shifting dynamic regime in the prey population initiating the same nature fluctuations in the predator population. The dynamic regimes emerging in the community models with and without harvesting are compared.
@article{MBB_2020_15_a3,
     author = {G. P. Neverova and O. L. Zhdanova and E. Ya. Frisman},
     title = {Dynamics of predator-prey community with age structures and its changing due to harvesting},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {t35--t51},
     publisher = {mathdoc},
     volume = {15},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2020_15_a3/}
}
TY  - JOUR
AU  - G. P. Neverova
AU  - O. L. Zhdanova
AU  - E. Ya. Frisman
TI  - Dynamics of predator-prey community with age structures and its changing due to harvesting
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2020
SP  - t35
EP  - t51
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2020_15_a3/
LA  - en
ID  - MBB_2020_15_a3
ER  - 
%0 Journal Article
%A G. P. Neverova
%A O. L. Zhdanova
%A E. Ya. Frisman
%T Dynamics of predator-prey community with age structures and its changing due to harvesting
%J Matematičeskaâ biologiâ i bioinformatika
%D 2020
%P t35-t51
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2020_15_a3/
%G en
%F MBB_2020_15_a3
G. P. Neverova; O. L. Zhdanova; E. Ya. Frisman. Dynamics of predator-prey community with age structures and its changing due to harvesting. Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020), pp. t35-t51. http://geodesic.mathdoc.fr/item/MBB_2020_15_a3/

[1] A. J. Lotka, Analytical theory of biological populations, Springer Science & Business Media, 1998, 220 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1665874'>1665874</ext-link>

[2] V. Volterra, Leçons sur la théorie mathématique de la lutte pour la vie, Gauthier-Villars, Paris, 1931 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1189803'>1189803</ext-link>

[3] Yu. V. Tyutyunov, L. I. Titova, “From Lotka–Volterra to Arditi–Ginzburg: 90 years of evolving trophic functions”, Biology Bulletin Reviews, 79:6 (2018), 428–448

[4] C. S. Holling, “The functional response of predators to prey density and its role in mimicry and population regulation”, Mem. Ent. Soc. Can., 45 (1965), 1–60

[5] H. Caswell, Matrix Population Models: Construction, Analysis, and Interpretation, Sinauer Associates. Inc., Sunderland, MA, 2001

[6] A.D. Bazykin, Mathematical biophysics of interacting populations, M., 1985, 181 pp. (in Russ.) <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=801544'>801544</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0605.92015'>0605.92015</ext-link>

[7] J. L. Sabo, “Stochasticity, predator-prey dynamics, and trigger harvest of nonnative predators”, Ecology, 86:9 (2005), 2329–2343 <ext-link ext-link-type='doi' href='https://doi.org/10.1890/04-1152'>10.1890/04-1152</ext-link>

[8] E.V. Pacht, A.I. Abakumov, “Uncertainty at modelling of a lake's ecosystem”, Mathematical Biology and Bioinformatics, 6:1 (2011), 102–114 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2011.6.102'>10.17537/2011.6.102</ext-link>

[9] I.A. Bashkirtseva, P.V. Boyarshinova, T.V. Ryazanova, L.B. Ryashko, “Analysis of noise-induced destruction of coexistence regimes in “prey-predator” population model”, Computer Research and Modeling, 8:4 (2016), 647–660 <ext-link ext-link-type='doi' href='https://doi.org/10.20537/2076-7633-2016-8-4-647-660'>10.20537/2076-7633-2016-8-4-647-660</ext-link>

[10] E.P. Abramova, T.V. Ryazanova, “Dynamic regimes of the stochastic “prey–predatory” model with competition and saturation”, Computer Research and Modeling, 11:3 (2019), 515–531 <ext-link ext-link-type='doi' href='https://doi.org/10.20537/2076-7633-2019-11-3-515-531'>10.20537/2076-7633-2019-11-3-515-531</ext-link>

[11] Yu.M. Aponin, E.A. Aponina, “Mathematical model of predator – prey system with lower critical prey density”, Computer Research and Modeling, 1:1 (2009), 51–56 <ext-link ext-link-type='doi' href='https://doi.org/10.20537/2076-7633-2009-1-1-51-56'>10.20537/2076-7633-2009-1-1-51-56</ext-link>

[12] C. Xu, Y. Wu, L. Lu, “Permanence and global attractivity in a discrete Lotka-Volterra predator-prey model with delays”, Advances in Difference Equations, 1 (2014), 1–5 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3359134'>3359134</ext-link>

[13] Y.Y. Frisman, M.P. Kulakov, O.L. Revutskaya, O.L. Zhdanova, G.P. Neverova, “The key approaches and review of current researches on dynamics of structured and interacting populations”, Computer Research and Modeling, 11:1 (2019), 119–151 <ext-link ext-link-type='doi' href='https://doi.org/10.20537/2076-7633-2019-11-1-119-151'>10.20537/2076-7633-2019-11-1-119-151</ext-link>

[14] Y. Saito, Y. Takeuchi, “A time-delay model for prey-predator growth with stage structure”, Canadian Applied Mathematics Quarterly, 11:3 (2003), 293–302 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2132201'>2132201</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1087.34551'>1087.34551</ext-link>

[15] S. A. Gourley, Y. Kuang, “A stage structured predator-prey model and its dependence on maturation delay and death rate”, Journal of mathematical Biology, 49:2 (2004), 188–200 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s00285-004-0278-2'>10.1007/s00285-004-0278-2</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2145690'>2145690</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1055.92043'>1055.92043</ext-link>

[16] X. K. Sun, H. F. Huo, H. Xiang, “Bifurcation and stability analysis in predator-prey model with a stage-structure for predator”, Nonlinear Dynamics, 58:3 (2009), 497–513 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s11071-009-9495-y'>10.1007/s11071-009-9495-y</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2562945'>2562945</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1183.92085'>1183.92085</ext-link>

[17] R. Xu, “Global dynamics of a predator-prey model with time delay and stage structure for the prey”, Nonlinear Analysis: Real World Applications, 12:4 (2011), 2151–2162 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.nonrwa.2010.12.029'>10.1016/j.nonrwa.2010.12.029</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2801008'>2801008</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1223.34115'>1223.34115</ext-link>

[18] K. Chakraborty, S. Jana, T. K. Kar, “Global dynamics and bifurcation in a stage structured prey-predator fishery model with harvesting”, Applied Mathematics and Computation, 218:18 (2012), 9271–9290 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.amc.2012.03.005'>10.1016/j.amc.2012.03.005</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2923025'>2923025</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1246.92026'>1246.92026</ext-link>

[19] S. Kundu, S. Maitra, “Dynamics of a delayed predator-prey system with stage structure and cooperation for preys”, Chaos, Solitons & Fractals, 114 (2018), 453–460 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.chaos.2018.07.013'>10.1016/j.chaos.2018.07.013</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3856667'>3856667</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1415.92152'>1415.92152</ext-link>

[20] P. A. Abrams, C. Quince, “The impact of mortality on predator population size and stability in systems with stage-structured prey”, Theoretical Population Biology, 68:4 (2005), 253–266 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.tpb.2005.05.004'>10.1016/j.tpb.2005.05.004</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1085.92038'>1085.92038</ext-link>

[21] S. Khajanchi, S. Banerjee, “Role of constant prey refuge on stage structure predator-prey model with ratio dependent functional response”, Applied Mathematics and Computation, 314 (2017), 193–198 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.amc.2017.07.017'>10.1016/j.amc.2017.07.017</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3683866'>3683866</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1426.34098'>1426.34098</ext-link>

[22] J. Bhattacharyya, S. Pal, “Stage-structured cannibalism in a ratio-dependent system with constant prey refuge and harvesting of matured predator”, Differential Equations and Dynamical Systems, 24:3 (2016), 345–366 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s12591-016-0299-5'>10.1007/s12591-016-0299-5</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3515048'>3515048</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1358.34050'>1358.34050</ext-link>

[23] A.I. Abakumov, O.I. Il'in, N.S. Ivanko, “Game problems of harvesting in a biological community”, Mathematical Game Theory and Applications, 77:4 (2016), 697–707 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3519317'>3519317</ext-link>

[24] A.I. Abakumov, Yu.G. Izrailsky, “The Harvesting Effect on a Fish Population”, Mathematical Biology and Bioinformatics, 11:2 (2016), 191–204 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2016.11.191'>10.17537/2016.11.191</ext-link>

[25] P. Walters, V. Christensen, B. Fulton, A. D. Smith, R. Hilborn, “Predictions from simple predator-prey theory about impacts of harvesting forage fishes”, Ecological modelling, 337 (2016), 272–280 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.ecolmodel.2016.07.014'>10.1016/j.ecolmodel.2016.07.014</ext-link>

[26] A. I. Abakumov, O. I. Il'in, N. S. Ivanko, “Game problems of harvesting in a biological community”, Automation and Remote Control, 77:4 (2016), 697–707 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/S0005117916040135'>10.1134/S0005117916040135</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3519317'>3519317</ext-link>

[27] C. Liu, Q. Zhang, X. Duan, “Dynamical behavior in a harvested differential-algebraic prey-predator model with discrete time delay and stage structure”, Journal of the Franklin Institute, 346:10 (2009), 1038–1059 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jfranklin.2009.06.004'>10.1016/j.jfranklin.2009.06.004</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2557934'>2557934</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1185.49043'>1185.49043</ext-link>

[28] C. Liu, Q. Zhang, X. Zhang, X. Duan, “Dynamical behavior in a stage-structured differential-algebraic prey-predator model with discrete time delay and harvesting”, Journal of Computational and Applied Mathematics, 231:2 (2009), 612–625 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cam.2009.04.011'>10.1016/j.cam.2009.04.011</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2549727'>2549727</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1176.34101'>1176.34101</ext-link>

[29] G. Caughley, Analysis of Vertebrate Populations, John Wiley and Sons, 1977

[30] G.P. Neverova, A.I. Abakumov, E.Ya. Frisman, “Dynamic Modes of Limited Structured Population under Age Specific Harvest”, Mathematical Biology and Bioinformatics, 12:2 (2017), 327–342 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2017.12.327'>10.17537/2017.12.327</ext-link>

[31] G. P. Neverova, Abakumov A.I, I. P. Yarovenko, E. Ya. Frisman, “Mode change in the dynamics of exploited limited population with age structure”, Nonlinear Dynamics, 94 (2018), 827–844 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s11071-018-4396-6'>10.1007/s11071-018-4396-6</ext-link>

[32] O.L. Revutskaya, G.P. Neverova, E.Ya. Frisman, “Influence of Harvest on the Dynamics of Populations with Age and Sex Structures”, Mathematical Biology and Bioinformatics, 13:1 (2018), 270–289 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2018.13.270'>10.17537/2018.13.270</ext-link>

[33] H. N. Agiza, E. M. Elabbasy, H. El-Metwally, A. A. Elsadany, “Chaotic dynamics of a discrete prey-predator model with Holling type II”, Nonlinear Analysis: Real World Applications, 10:1 (2009), 116–129 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.nonrwa.2007.08.029'>10.1016/j.nonrwa.2007.08.029</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2451695'>2451695</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1154.37335'>1154.37335</ext-link>

[34] Z. Hu, Z. Teng, L. Zhang, “Stability and bifurcation analysis of a discrete predator-prey model with nonmonotonic functional response”, Nonlinear Analysis: Real World Applications, 12:4 (2011), 2356–2377 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.nonrwa.2011.02.009'>10.1016/j.nonrwa.2011.02.009</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2801025'>2801025</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1215.92063'>1215.92063</ext-link>

[35] J. Zhao, Y. Yan, “Stability and bifurcation analysis of a discrete predator-prey system with modified Holling-Tanner functional response”, Advances in Difference Equations, 2018, 402 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/s13662-018-1819-0'>10.1186/s13662-018-1819-0</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3870768'>3870768</ext-link>

[36] D. P. Mistro, L. A.D. Rodrigues, S. Petrovskii, “Spatiotemporal complexity of biological invasion in a space- and time-discrete predator-prey system with the strong Allee effect”, Ecological Complexity, 9 (2012), 16–32 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.ecocom.2011.11.004'>10.1016/j.ecocom.2011.11.004</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3078503'>3078503</ext-link>

[37] T. Huang, H. Zhang, “Bifurcation, chaos and pattern formation in a space-and time-discrete predator-prey system”, Chaos, Solitons & Fractals, 91 (2016), 92–107 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.chaos.2016.05.009'>10.1016/j.chaos.2016.05.009</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3551690'>3551690</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1372.92082'>1372.92082</ext-link>

[38] T. Huang, H. Zhang, H. Yang, N. Wang, F. Zhang, “Complex patterns in a space-and time-discrete predator-prey model with Beddington-DeAngelis functional response”, Communications in Nonlinear Science and Numerical Simulation, 43 (2017), 182–199 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cnsns.2016.07.004'>10.1016/j.cnsns.2016.07.004</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3537313'>3537313</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:07257294'>07257294</ext-link>

[39] J. Zhong, Z. Yu, “Qualitative properties and bifurcations of Mistro-Rodrigues-Petrovskii model”, Nonlinear Dynamics, 91:4 (2018), 2063–2075 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s11071-017-3932-0'>10.1007/s11071-017-3932-0</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1392.37096'>1392.37096</ext-link>

[40] J. R. Reimer, H. Brown, E. Beltaos-Kerr, G. de Vries, “Evidence of intraspecific prey switching: stage-structured predation of polar bears on ringed seals”, Oecologia, 189:1 (2018), 133–148 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s00442-018-4297-x'>10.1007/s00442-018-4297-x</ext-link>

[41] A. Wikan, Ø. Kristensen, “Prey-Predator Interactions in Two and Three Species Population Models”, Discrete Dynamics in Nature and Society, 2019 (2019), 1–14 <ext-link ext-link-type='doi' href='https://doi.org/10.1155/2019/9543139'>10.1155/2019/9543139</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3919048'>3919048</ext-link>

[42] C. C. Wilmers, E. Post, A. Hastings, “The anatomy of predator-prey dynamics in a changing climate”, Journal of Animal Ecology, 76:6 (2007), 1037–1044 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/j.1365-2656.2007.01289.x'>10.1111/j.1365-2656.2007.01289.x</ext-link>

[43] R. Kon, “Multiple attractors in host-parasitoid interactions: Coexistence and extinction”, Mathematical Biosciences, 201:1-2 (2006), 172–183 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.mbs.2005.12.010'>10.1016/j.mbs.2005.12.010</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2252086'>2252086</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1093.92056'>1093.92056</ext-link>

[44] O.L. Revutskaya, M.P. Kulakov, E.Ya. Frisman, “Bistability and Bifurcations in Modified Nicholson-Bailey Model with Age-Structure for Prey”, Mathematical Biology and Bioinformatics, 14:1 (2019), 257–278 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2019.14.257'>10.17537/2019.14.257</ext-link>

[45] Y. Kang, D. Armbruster, Y. Kuang, “Dynamics of a plant-herbivore model”, Journal of Biological Dynamics, 2:2 (2008), 89–101 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/17513750801956313'>10.1080/17513750801956313</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2427520'>2427520</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1140.92322'>1140.92322</ext-link>

[46] Y. Kang, D. Armbruster, “Noise and seasonal effects on the dynamics of plant-herbivore models with monotonic plant growth functions”, International Journal of Biomathematics, 4:3 (2011), 255–274 <ext-link ext-link-type='doi' href='https://doi.org/10.1142/S1793524511001234'>10.1142/S1793524511001234</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2845199'>2845199</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1247.37091'>1247.37091</ext-link>

[47] A. Wikan, “An analysis of discrete stage-structured prey and prey-predator population models”, Discrete Dynamics in Nature and Society, 2017 (2017) <ext-link ext-link-type='doi' href='https://doi.org/10.1155/2017/9475854'>10.1155/2017/9475854</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3641856'>3641856</ext-link>

[48] M. Basson, M. J. Fogarty, “Harvesting in discrete-time predator-prey systems”, Mathematical biosciences, 141:1 (1997), 41–74 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0025-5564(96)00173-3'>10.1016/S0025-5564(96)00173-3</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0880.92034'>0880.92034</ext-link>

[49] B. Chen, J. Chen, “Complex dynamic behaviors of a discrete predator-prey model with stage structure and harvesting”, International Journal of Biomathematics, 10:1 (2017), 1750013 <ext-link ext-link-type='doi' href='https://doi.org/10.1142/S1793524517500139'>10.1142/S1793524517500139</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3572580'>3572580</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1366.92101'>1366.92101</ext-link>

[50] O.L. Zhdanova, G.P. Neverova, E.Ya. Frisman, “Modeling the dynamics of the predatorprey community based on the age structure of the interacting species”, Information Science and Control Systems, 2018, no. 4 (58), 34–45

[51] G.P. Neverova, O.L. Zhdanova, E.Ya. Frisman, “Modeling the Dynamics of PredatorPrey Community with Age Structures”, Mathematical Biology and Bioinformatics, 14:1 (2019), 77–93 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2019.14.77'>10.17537/2019.14.77</ext-link>

[52] G. P. Neverova, O. L. Zhdanova, Bapan Ghosh, E. Ya. Frisman, “Dynamics of a discrete-time stage-structured predator-prey system with Holling type II response function”, Nonlinear dynamics, 98:1 (2019), 427–446 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s11071-019-05202-3'>10.1007/s11071-019-05202-3</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1430.37115'>1430.37115</ext-link>

[53] A. Angerbjorn, M. Tannerfeldt, S. Erlinge, “Predator-prey relationships: arctic foxes and lemmings”, Journal of Animal Ecology, 68:1 (1999), 34–49 <ext-link ext-link-type='doi' href='https://doi.org/10.1046/j.1365-2656.1999.00258.x'>10.1046/j.1365-2656.1999.00258.x</ext-link>

[54] A.P. Kuznetsov, A.V. Savin, Y.V. Sedova, L.V. Tyuryukina, Bifurcation of Images, Press Center Ltd “Nauka”, Saratov, 2012, 196 pp. (in Russ.)

[55] P. Hersteinsson, D. W. Macdonald, “Diet of Arctic foxes (Alopex lagopus) in Iceland”, J. Zool., 240 (1996), 457–474 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/j.1469-7998.1996.tb05298.x'>10.1111/j.1469-7998.1996.tb05298.x</ext-link>