Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2020_15_a3, author = {G. P. Neverova and O. L. Zhdanova and E. Ya. Frisman}, title = {Dynamics of predator-prey community with age structures and its changing due to harvesting}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {t35--t51}, publisher = {mathdoc}, volume = {15}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2020_15_a3/} }
TY - JOUR AU - G. P. Neverova AU - O. L. Zhdanova AU - E. Ya. Frisman TI - Dynamics of predator-prey community with age structures and its changing due to harvesting JO - Matematičeskaâ biologiâ i bioinformatika PY - 2020 SP - t35 EP - t51 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2020_15_a3/ LA - en ID - MBB_2020_15_a3 ER -
%0 Journal Article %A G. P. Neverova %A O. L. Zhdanova %A E. Ya. Frisman %T Dynamics of predator-prey community with age structures and its changing due to harvesting %J Matematičeskaâ biologiâ i bioinformatika %D 2020 %P t35-t51 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2020_15_a3/ %G en %F MBB_2020_15_a3
G. P. Neverova; O. L. Zhdanova; E. Ya. Frisman. Dynamics of predator-prey community with age structures and its changing due to harvesting. Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020), pp. t35-t51. http://geodesic.mathdoc.fr/item/MBB_2020_15_a3/
[1] A. J. Lotka, Analytical theory of biological populations, Springer Science & Business Media, 1998, 220 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1665874'>1665874</ext-link>
[2] V. Volterra, Leçons sur la théorie mathématique de la lutte pour la vie, Gauthier-Villars, Paris, 1931 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1189803'>1189803</ext-link>
[3] Yu. V. Tyutyunov, L. I. Titova, “From Lotka–Volterra to Arditi–Ginzburg: 90 years of evolving trophic functions”, Biology Bulletin Reviews, 79:6 (2018), 428–448
[4] C. S. Holling, “The functional response of predators to prey density and its role in mimicry and population regulation”, Mem. Ent. Soc. Can., 45 (1965), 1–60
[5] H. Caswell, Matrix Population Models: Construction, Analysis, and Interpretation, Sinauer Associates. Inc., Sunderland, MA, 2001
[6] A.D. Bazykin, Mathematical biophysics of interacting populations, M., 1985, 181 pp. (in Russ.) <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=801544'>801544</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0605.92015'>0605.92015</ext-link>
[7] J. L. Sabo, “Stochasticity, predator-prey dynamics, and trigger harvest of nonnative predators”, Ecology, 86:9 (2005), 2329–2343 <ext-link ext-link-type='doi' href='https://doi.org/10.1890/04-1152'>10.1890/04-1152</ext-link>
[8] E.V. Pacht, A.I. Abakumov, “Uncertainty at modelling of a lake's ecosystem”, Mathematical Biology and Bioinformatics, 6:1 (2011), 102–114 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2011.6.102'>10.17537/2011.6.102</ext-link>
[9] I.A. Bashkirtseva, P.V. Boyarshinova, T.V. Ryazanova, L.B. Ryashko, “Analysis of noise-induced destruction of coexistence regimes in “prey-predator” population model”, Computer Research and Modeling, 8:4 (2016), 647–660 <ext-link ext-link-type='doi' href='https://doi.org/10.20537/2076-7633-2016-8-4-647-660'>10.20537/2076-7633-2016-8-4-647-660</ext-link>
[10] E.P. Abramova, T.V. Ryazanova, “Dynamic regimes of the stochastic “prey–predatory” model with competition and saturation”, Computer Research and Modeling, 11:3 (2019), 515–531 <ext-link ext-link-type='doi' href='https://doi.org/10.20537/2076-7633-2019-11-3-515-531'>10.20537/2076-7633-2019-11-3-515-531</ext-link>
[11] Yu.M. Aponin, E.A. Aponina, “Mathematical model of predator – prey system with lower critical prey density”, Computer Research and Modeling, 1:1 (2009), 51–56 <ext-link ext-link-type='doi' href='https://doi.org/10.20537/2076-7633-2009-1-1-51-56'>10.20537/2076-7633-2009-1-1-51-56</ext-link>
[12] C. Xu, Y. Wu, L. Lu, “Permanence and global attractivity in a discrete Lotka-Volterra predator-prey model with delays”, Advances in Difference Equations, 1 (2014), 1–5 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3359134'>3359134</ext-link>
[13] Y.Y. Frisman, M.P. Kulakov, O.L. Revutskaya, O.L. Zhdanova, G.P. Neverova, “The key approaches and review of current researches on dynamics of structured and interacting populations”, Computer Research and Modeling, 11:1 (2019), 119–151 <ext-link ext-link-type='doi' href='https://doi.org/10.20537/2076-7633-2019-11-1-119-151'>10.20537/2076-7633-2019-11-1-119-151</ext-link>
[14] Y. Saito, Y. Takeuchi, “A time-delay model for prey-predator growth with stage structure”, Canadian Applied Mathematics Quarterly, 11:3 (2003), 293–302 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2132201'>2132201</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1087.34551'>1087.34551</ext-link>
[15] S. A. Gourley, Y. Kuang, “A stage structured predator-prey model and its dependence on maturation delay and death rate”, Journal of mathematical Biology, 49:2 (2004), 188–200 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s00285-004-0278-2'>10.1007/s00285-004-0278-2</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2145690'>2145690</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1055.92043'>1055.92043</ext-link>
[16] X. K. Sun, H. F. Huo, H. Xiang, “Bifurcation and stability analysis in predator-prey model with a stage-structure for predator”, Nonlinear Dynamics, 58:3 (2009), 497–513 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s11071-009-9495-y'>10.1007/s11071-009-9495-y</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2562945'>2562945</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1183.92085'>1183.92085</ext-link>
[17] R. Xu, “Global dynamics of a predator-prey model with time delay and stage structure for the prey”, Nonlinear Analysis: Real World Applications, 12:4 (2011), 2151–2162 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.nonrwa.2010.12.029'>10.1016/j.nonrwa.2010.12.029</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2801008'>2801008</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1223.34115'>1223.34115</ext-link>
[18] K. Chakraborty, S. Jana, T. K. Kar, “Global dynamics and bifurcation in a stage structured prey-predator fishery model with harvesting”, Applied Mathematics and Computation, 218:18 (2012), 9271–9290 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.amc.2012.03.005'>10.1016/j.amc.2012.03.005</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2923025'>2923025</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1246.92026'>1246.92026</ext-link>
[19] S. Kundu, S. Maitra, “Dynamics of a delayed predator-prey system with stage structure and cooperation for preys”, Chaos, Solitons & Fractals, 114 (2018), 453–460 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.chaos.2018.07.013'>10.1016/j.chaos.2018.07.013</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3856667'>3856667</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1415.92152'>1415.92152</ext-link>
[20] P. A. Abrams, C. Quince, “The impact of mortality on predator population size and stability in systems with stage-structured prey”, Theoretical Population Biology, 68:4 (2005), 253–266 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.tpb.2005.05.004'>10.1016/j.tpb.2005.05.004</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1085.92038'>1085.92038</ext-link>
[21] S. Khajanchi, S. Banerjee, “Role of constant prey refuge on stage structure predator-prey model with ratio dependent functional response”, Applied Mathematics and Computation, 314 (2017), 193–198 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.amc.2017.07.017'>10.1016/j.amc.2017.07.017</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3683866'>3683866</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1426.34098'>1426.34098</ext-link>
[22] J. Bhattacharyya, S. Pal, “Stage-structured cannibalism in a ratio-dependent system with constant prey refuge and harvesting of matured predator”, Differential Equations and Dynamical Systems, 24:3 (2016), 345–366 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s12591-016-0299-5'>10.1007/s12591-016-0299-5</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3515048'>3515048</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1358.34050'>1358.34050</ext-link>
[23] A.I. Abakumov, O.I. Il'in, N.S. Ivanko, “Game problems of harvesting in a biological community”, Mathematical Game Theory and Applications, 77:4 (2016), 697–707 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3519317'>3519317</ext-link>
[24] A.I. Abakumov, Yu.G. Izrailsky, “The Harvesting Effect on a Fish Population”, Mathematical Biology and Bioinformatics, 11:2 (2016), 191–204 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2016.11.191'>10.17537/2016.11.191</ext-link>
[25] P. Walters, V. Christensen, B. Fulton, A. D. Smith, R. Hilborn, “Predictions from simple predator-prey theory about impacts of harvesting forage fishes”, Ecological modelling, 337 (2016), 272–280 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.ecolmodel.2016.07.014'>10.1016/j.ecolmodel.2016.07.014</ext-link>
[26] A. I. Abakumov, O. I. Il'in, N. S. Ivanko, “Game problems of harvesting in a biological community”, Automation and Remote Control, 77:4 (2016), 697–707 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/S0005117916040135'>10.1134/S0005117916040135</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3519317'>3519317</ext-link>
[27] C. Liu, Q. Zhang, X. Duan, “Dynamical behavior in a harvested differential-algebraic prey-predator model with discrete time delay and stage structure”, Journal of the Franklin Institute, 346:10 (2009), 1038–1059 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jfranklin.2009.06.004'>10.1016/j.jfranklin.2009.06.004</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2557934'>2557934</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1185.49043'>1185.49043</ext-link>
[28] C. Liu, Q. Zhang, X. Zhang, X. Duan, “Dynamical behavior in a stage-structured differential-algebraic prey-predator model with discrete time delay and harvesting”, Journal of Computational and Applied Mathematics, 231:2 (2009), 612–625 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cam.2009.04.011'>10.1016/j.cam.2009.04.011</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2549727'>2549727</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1176.34101'>1176.34101</ext-link>
[29] G. Caughley, Analysis of Vertebrate Populations, John Wiley and Sons, 1977
[30] G.P. Neverova, A.I. Abakumov, E.Ya. Frisman, “Dynamic Modes of Limited Structured Population under Age Specific Harvest”, Mathematical Biology and Bioinformatics, 12:2 (2017), 327–342 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2017.12.327'>10.17537/2017.12.327</ext-link>
[31] G. P. Neverova, Abakumov A.I, I. P. Yarovenko, E. Ya. Frisman, “Mode change in the dynamics of exploited limited population with age structure”, Nonlinear Dynamics, 94 (2018), 827–844 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s11071-018-4396-6'>10.1007/s11071-018-4396-6</ext-link>
[32] O.L. Revutskaya, G.P. Neverova, E.Ya. Frisman, “Influence of Harvest on the Dynamics of Populations with Age and Sex Structures”, Mathematical Biology and Bioinformatics, 13:1 (2018), 270–289 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2018.13.270'>10.17537/2018.13.270</ext-link>
[33] H. N. Agiza, E. M. Elabbasy, H. El-Metwally, A. A. Elsadany, “Chaotic dynamics of a discrete prey-predator model with Holling type II”, Nonlinear Analysis: Real World Applications, 10:1 (2009), 116–129 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.nonrwa.2007.08.029'>10.1016/j.nonrwa.2007.08.029</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2451695'>2451695</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1154.37335'>1154.37335</ext-link>
[34] Z. Hu, Z. Teng, L. Zhang, “Stability and bifurcation analysis of a discrete predator-prey model with nonmonotonic functional response”, Nonlinear Analysis: Real World Applications, 12:4 (2011), 2356–2377 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.nonrwa.2011.02.009'>10.1016/j.nonrwa.2011.02.009</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2801025'>2801025</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1215.92063'>1215.92063</ext-link>
[35] J. Zhao, Y. Yan, “Stability and bifurcation analysis of a discrete predator-prey system with modified Holling-Tanner functional response”, Advances in Difference Equations, 2018, 402 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/s13662-018-1819-0'>10.1186/s13662-018-1819-0</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3870768'>3870768</ext-link>
[36] D. P. Mistro, L. A.D. Rodrigues, S. Petrovskii, “Spatiotemporal complexity of biological invasion in a space- and time-discrete predator-prey system with the strong Allee effect”, Ecological Complexity, 9 (2012), 16–32 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.ecocom.2011.11.004'>10.1016/j.ecocom.2011.11.004</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3078503'>3078503</ext-link>
[37] T. Huang, H. Zhang, “Bifurcation, chaos and pattern formation in a space-and time-discrete predator-prey system”, Chaos, Solitons & Fractals, 91 (2016), 92–107 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.chaos.2016.05.009'>10.1016/j.chaos.2016.05.009</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3551690'>3551690</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1372.92082'>1372.92082</ext-link>
[38] T. Huang, H. Zhang, H. Yang, N. Wang, F. Zhang, “Complex patterns in a space-and time-discrete predator-prey model with Beddington-DeAngelis functional response”, Communications in Nonlinear Science and Numerical Simulation, 43 (2017), 182–199 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cnsns.2016.07.004'>10.1016/j.cnsns.2016.07.004</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3537313'>3537313</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:07257294'>07257294</ext-link>
[39] J. Zhong, Z. Yu, “Qualitative properties and bifurcations of Mistro-Rodrigues-Petrovskii model”, Nonlinear Dynamics, 91:4 (2018), 2063–2075 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s11071-017-3932-0'>10.1007/s11071-017-3932-0</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1392.37096'>1392.37096</ext-link>
[40] J. R. Reimer, H. Brown, E. Beltaos-Kerr, G. de Vries, “Evidence of intraspecific prey switching: stage-structured predation of polar bears on ringed seals”, Oecologia, 189:1 (2018), 133–148 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s00442-018-4297-x'>10.1007/s00442-018-4297-x</ext-link>
[41] A. Wikan, Ø. Kristensen, “Prey-Predator Interactions in Two and Three Species Population Models”, Discrete Dynamics in Nature and Society, 2019 (2019), 1–14 <ext-link ext-link-type='doi' href='https://doi.org/10.1155/2019/9543139'>10.1155/2019/9543139</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3919048'>3919048</ext-link>
[42] C. C. Wilmers, E. Post, A. Hastings, “The anatomy of predator-prey dynamics in a changing climate”, Journal of Animal Ecology, 76:6 (2007), 1037–1044 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/j.1365-2656.2007.01289.x'>10.1111/j.1365-2656.2007.01289.x</ext-link>
[43] R. Kon, “Multiple attractors in host-parasitoid interactions: Coexistence and extinction”, Mathematical Biosciences, 201:1-2 (2006), 172–183 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.mbs.2005.12.010'>10.1016/j.mbs.2005.12.010</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2252086'>2252086</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1093.92056'>1093.92056</ext-link>
[44] O.L. Revutskaya, M.P. Kulakov, E.Ya. Frisman, “Bistability and Bifurcations in Modified Nicholson-Bailey Model with Age-Structure for Prey”, Mathematical Biology and Bioinformatics, 14:1 (2019), 257–278 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2019.14.257'>10.17537/2019.14.257</ext-link>
[45] Y. Kang, D. Armbruster, Y. Kuang, “Dynamics of a plant-herbivore model”, Journal of Biological Dynamics, 2:2 (2008), 89–101 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/17513750801956313'>10.1080/17513750801956313</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2427520'>2427520</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1140.92322'>1140.92322</ext-link>
[46] Y. Kang, D. Armbruster, “Noise and seasonal effects on the dynamics of plant-herbivore models with monotonic plant growth functions”, International Journal of Biomathematics, 4:3 (2011), 255–274 <ext-link ext-link-type='doi' href='https://doi.org/10.1142/S1793524511001234'>10.1142/S1793524511001234</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2845199'>2845199</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1247.37091'>1247.37091</ext-link>
[47] A. Wikan, “An analysis of discrete stage-structured prey and prey-predator population models”, Discrete Dynamics in Nature and Society, 2017 (2017) <ext-link ext-link-type='doi' href='https://doi.org/10.1155/2017/9475854'>10.1155/2017/9475854</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3641856'>3641856</ext-link>
[48] M. Basson, M. J. Fogarty, “Harvesting in discrete-time predator-prey systems”, Mathematical biosciences, 141:1 (1997), 41–74 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0025-5564(96)00173-3'>10.1016/S0025-5564(96)00173-3</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0880.92034'>0880.92034</ext-link>
[49] B. Chen, J. Chen, “Complex dynamic behaviors of a discrete predator-prey model with stage structure and harvesting”, International Journal of Biomathematics, 10:1 (2017), 1750013 <ext-link ext-link-type='doi' href='https://doi.org/10.1142/S1793524517500139'>10.1142/S1793524517500139</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3572580'>3572580</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1366.92101'>1366.92101</ext-link>
[50] O.L. Zhdanova, G.P. Neverova, E.Ya. Frisman, “Modeling the dynamics of the predatorprey community based on the age structure of the interacting species”, Information Science and Control Systems, 2018, no. 4 (58), 34–45
[51] G.P. Neverova, O.L. Zhdanova, E.Ya. Frisman, “Modeling the Dynamics of PredatorPrey Community with Age Structures”, Mathematical Biology and Bioinformatics, 14:1 (2019), 77–93 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2019.14.77'>10.17537/2019.14.77</ext-link>
[52] G. P. Neverova, O. L. Zhdanova, Bapan Ghosh, E. Ya. Frisman, “Dynamics of a discrete-time stage-structured predator-prey system with Holling type II response function”, Nonlinear dynamics, 98:1 (2019), 427–446 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s11071-019-05202-3'>10.1007/s11071-019-05202-3</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1430.37115'>1430.37115</ext-link>
[53] A. Angerbjorn, M. Tannerfeldt, S. Erlinge, “Predator-prey relationships: arctic foxes and lemmings”, Journal of Animal Ecology, 68:1 (1999), 34–49 <ext-link ext-link-type='doi' href='https://doi.org/10.1046/j.1365-2656.1999.00258.x'>10.1046/j.1365-2656.1999.00258.x</ext-link>
[54] A.P. Kuznetsov, A.V. Savin, Y.V. Sedova, L.V. Tyuryukina, Bifurcation of Images, Press Center Ltd “Nauka”, Saratov, 2012, 196 pp. (in Russ.)
[55] P. Hersteinsson, D. W. Macdonald, “Diet of Arctic foxes (Alopex lagopus) in Iceland”, J. Zool., 240 (1996), 457–474 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/j.1469-7998.1996.tb05298.x'>10.1111/j.1469-7998.1996.tb05298.x</ext-link>