Application of molecular dynamic and Monte-Carlo methods near the critical points
Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020), pp. t32-t34.

Voir la notice de l'article provenant de la source Math-Net.Ru

The applicability of molecular dynamics and Monte-Carlo methods near the phase transition are discussed. The melting of DNA is considered as an example.
@article{MBB_2020_15_a2,
     author = {N. K. Balabaev and V. D. Lakhno},
     title = {Application of molecular dynamic and {Monte-Carlo} methods near the critical points},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {t32--t34},
     publisher = {mathdoc},
     volume = {15},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2020_15_a2/}
}
TY  - JOUR
AU  - N. K. Balabaev
AU  - V. D. Lakhno
TI  - Application of molecular dynamic and Monte-Carlo methods near the critical points
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2020
SP  - t32
EP  - t34
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2020_15_a2/
LA  - ru
ID  - MBB_2020_15_a2
ER  - 
%0 Journal Article
%A N. K. Balabaev
%A V. D. Lakhno
%T Application of molecular dynamic and Monte-Carlo methods near the critical points
%J Matematičeskaâ biologiâ i bioinformatika
%D 2020
%P t32-t34
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2020_15_a2/
%G ru
%F MBB_2020_15_a2
N. K. Balabaev; V. D. Lakhno. Application of molecular dynamic and Monte-Carlo methods near the critical points. Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020), pp. t32-t34. http://geodesic.mathdoc.fr/item/MBB_2020_15_a2/

[1] I. V. Likhachev, V. D. Lakhno, “The direct investigation of DNA denaturation in Peyrard-Bishop-Dauxois model by molecular dynamics method”, Chem. Phys. Lett., 727 (2019), 55–58 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cplett.2019.04.027'>10.1016/j.cplett.2019.04.027</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3642602'>3642602</ext-link>

[2] I. V. Likhachev, V. D. Lakhno, “Investigation of DNA denaturation in Peyrard-Bishop-Dauxois model by molecular dynamics method”, Eur. Phys. J. B, 92 (2019), 253 <ext-link ext-link-type='doi' href='https://doi.org/10.1140/epjb/e2019-90741-6'>10.1140/epjb/e2019-90741-6</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3642602'>3642602</ext-link>

[3] A.V. Teplukhin, “Raschet teploemkosti tsepochek Peyrard-Bishop-Dauxois metodom Monte-Karlo”, Doklady Mezhdunarodnoi konferentsii “Matematicheskaya biologiya i bioinformatika”, v. 8, ed. V.D. Lakhno, IMPB RAN, Puschino, 2020, e5 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/icmbb20.13'>10.17537/icmbb20.13</ext-link>

[4] L.D. Landau, E.M. Lifshits, Statisticheskaya fizika, v. 1, Fiz.-mat. Lit., M., 1976