Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2020_15_a1, author = {A. E. Medvedev}, title = {Method of constructing an asymmetric human bronchial tree in normal and pathological cases}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {t21--t31}, publisher = {mathdoc}, volume = {15}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2020_15_a1/} }
TY - JOUR AU - A. E. Medvedev TI - Method of constructing an asymmetric human bronchial tree in normal and pathological cases JO - Matematičeskaâ biologiâ i bioinformatika PY - 2020 SP - t21 EP - t31 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2020_15_a1/ LA - ru ID - MBB_2020_15_a1 ER -
A. E. Medvedev. Method of constructing an asymmetric human bronchial tree in normal and pathological cases. Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020), pp. t21-t31. http://geodesic.mathdoc.fr/item/MBB_2020_15_a1/
[1] E. R. Veibel, Morfometriya legkikh cheloveka, Meditsina, M., 1970, 176 pp.
[2] A. E. Medvedev, P. S. Gafurova, “Analiticheskoe postroenie polnogo bronkhialnogo dereva cheloveka v norme i pri obstruktivnoi bolezni legkikh”, Matem. biologiya i bioinform., 14, Suppl. (2019), t62–t75 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2019.14.162'>10.17537/2019.14.162</ext-link>
[3] Y. Zhao, B. B. Lieber, “Steady inspiratory flow in a model symmetric bifurcation”, ASME Journal of Biomechanical Engineering, 116 (1994), 488–496 <ext-link ext-link-type='doi' href='https://doi.org/10.1115/1.2895800'>10.1115/1.2895800</ext-link>
[4] Y. Zhao, C. T. Brunskill, B. B. Lieber, “Inspiratory and expiratory steady flow analysis in a model symmetrically bifurcating airway”, ASME Journal of Biomechanical Engineering, 119 (1997), 52–58 <ext-link ext-link-type='doi' href='https://doi.org/10.1115/1.2796064'>10.1115/1.2796064</ext-link>
[5] C. J. Hegedüs, I. Balásházy, Á. Farkas, “Detailed mathematical description of the geometry of airway bifurcations”, Respiratory physiology & neurobiology, 141:1 (2004), 99–114 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.resp.2004.03.004'>10.1016/j.resp.2004.03.004</ext-link>
[6] T. Heistracher, W. Hofmann, “Physiologically realistic models of bronchial airway bifurcations”, J. Aerosol Sci, 26:3 (1995), 497–509 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0021-8502(94)00113-D'>10.1016/0021-8502(94)00113-D</ext-link>
[7] C. Ertbruggen, C. Hirsch, M. Paiva, “Anatomically based three-dimensional model of airways to simulate flow and particle transport using computational fluid dynamics”, J. Appl. Physiol, 98 (2005), 970–980 <ext-link ext-link-type='doi' href='https://doi.org/10.1152/japplphysiol.00795.2004'>10.1152/japplphysiol.00795.2004</ext-link>
[8] A. F. Tena, P. Casan, J. Fernández, C. Ferrera, A. Marcos, “Characterization of particle deposition in a lung model using an individual path”, EPJ Web of Conferences, 45 (2013), 01079 <ext-link ext-link-type='doi' href='https://doi.org/10.1051/epjconf/20134501079'>10.1051/epjconf/20134501079</ext-link>
[9] A. F. Tena, J. Fernández, E. Álvarez, P. Casan, D. K. Walters, “Design of a numerical model of lung by means of a special boundary condition in the truncated branches”, International Journal for Numerical Methods in Biomedical Engineering, 33:6 (2017), e2830 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/cnm.2830'>10.1002/cnm.2830</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3670871'>3670871</ext-link>
[10] A. F. Tena, J. F. Francos, E. Álvarez, P. A. Casan, “A three dimensional in SILICO model for the simulation of inspiratory and expiratory airflow in humans”, Engineering Applications of Computational Fluid Mechanics, 9:1 (2015), 187–198 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/19942060.2015.1004819'>10.1080/19942060.2015.1004819</ext-link>
[11] T. Gemci, V. Ponyavin, Y. Chen, H. Chen, R. Collins, “CFD Simulation of Airflow in a 17-Generation Digital Reference Model of the Human Bronchial Tree”, Series on Biomechanics, 23:1 (2007), 5–18
[12] T. Gemci, V. Ponyavin, Y. Chen, H. Chen, R. Collins, “Computational model of airflow in upper 17 generations of human respiratory tract”, Journal of Biomechanics, 41 (2008), 2047–2054 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jbiomech.2007.12.019'>10.1016/j.jbiomech.2007.12.019</ext-link>
[13] P. V. Trusov, N. V. Zaitseva, M. Yu. Tsinker, “Modelirovanie protsessa dykhaniya cheloveka: kontseptualnaya i matematicheskaya postanovki”, Matem. biologiya i bioinform., 11:1 (2016), 64–80 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2016.11.64'>10.17537/2016.11.64</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:06658153'>06658153</ext-link>
[14] P. V. Trusov, N. V. Zaitseva, M. Yu. Tsinker, A. V. Babushkina, “Modelirovanie techeniya zapylennogo vozdukha v respiratornom trakte”, Rossiiskii zhurnal biomekhaniki, 22:3 (2018), 301–314 <ext-link ext-link-type='doi' href='https://doi.org/10.15593/RZhBiomeh/2018.3.03'>10.15593/RZhBiomeh/2018.3.03</ext-link>
[15] J. Choi, Multiscale numerical analysis of airflow in CT-based subject specific breathing human lungs, PhD Dissertation, University of Iowa, Iowa, 2011, 259 pp.
[16] A. Khem, D. Kormak, Gistologiya, v. 4, Mir, M., 1983, 245 pp.
[17] Anthony L. Mescher, Junqueira's Basic Histology: Text and Atlas, 13th Edition, McGraw Hill Medical, New York, 2013, 560 pp.