Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2020_15_a0, author = {V. Yu. Lunin and N. L. Lunina and T. E. Petrova}, title = {Mask-based approach in phasing and restoring of single-particle diffraction data}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {t1--t20}, publisher = {mathdoc}, volume = {15}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2020_15_a0/} }
TY - JOUR AU - V. Yu. Lunin AU - N. L. Lunina AU - T. E. Petrova TI - Mask-based approach in phasing and restoring of single-particle diffraction data JO - Matematičeskaâ biologiâ i bioinformatika PY - 2020 SP - t1 EP - t20 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2020_15_a0/ LA - ru ID - MBB_2020_15_a0 ER -
%0 Journal Article %A V. Yu. Lunin %A N. L. Lunina %A T. E. Petrova %T Mask-based approach in phasing and restoring of single-particle diffraction data %J Matematičeskaâ biologiâ i bioinformatika %D 2020 %P t1-t20 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2020_15_a0/ %G ru %F MBB_2020_15_a0
V. Yu. Lunin; N. L. Lunina; T. E. Petrova. Mask-based approach in phasing and restoring of single-particle diffraction data. Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020), pp. t1-t20. http://geodesic.mathdoc.fr/item/MBB_2020_15_a0/
[1] P. D. Adams, P. V. Afonine, G. Bunkóczi, V. B. Chen, I. W. Davis, N. Echols, J. J. Headd, L. W. Hung, G. J. Kapral, R. W. Grosse-Kunstleve et al, “PHENIX: a comprehensive Python-based system for macromolecular structure solution”, Acta Crystallographica D, 66 (2010), 213–221 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0907444909052925'>10.1107/S0907444909052925</ext-link>
[2] M. D. Winn, C. C. Ballard, K. D. Cowtan, E. J. Dodson, P. Emsley, P. R. Evans, R. M. Keegan, E. B. Krissinel, A. G.W. Leslie, A. McCoy et al, “Overview of the CCP4 suite and current developments”, Acta Crystallographica D, 67 (2011), 235–242 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0907444910045749'>10.1107/S0907444910045749</ext-link>
[3] G. M. Sheldrick, “A short history of SHELX”, Acta Crystallographica A, 64 (2008), 112–122 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0108767307043930'>10.1107/S0108767307043930</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1370.52003'>1370.52003</ext-link>
[4] G. Bricogne, C. Vonrhein, C. Flensburg, M. Schiltz, W. Paciorek, “Generation, representation and flow of phase information in structure determination: recent developments in and around SHARP 2.0”, Acta Crystallographica D, 59 (2003), 2023–2030 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0907444903017694'>10.1107/S0907444903017694</ext-link>
[5] E. Blanc, P. Roversi, C. Vonrhein, C. Flensburg, S. M. Lea, G. Bricogne, “Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT”, Acta Crystallographica D, 60 (2004), 2210–2221 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0907444904016427'>10.1107/S0907444904016427</ext-link>
[6] W. Minor, M. Cymborowski, Z. Otwinowski, M. Chruszcz, “HKL-3000: the integration of data reduction and structure solution – from diffraction images to an initial model in minutes”, Acta Crystallographica D, 62 (2006), 859–866 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0907444906019949'>10.1107/S0907444906019949</ext-link>
[7] J. C.H. Spence, “XFELs for structure and dynamics in biology”, IUCrJ, 4 (2017), 322–339 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S2052252517005760'>10.1107/S2052252517005760</ext-link>
[8] J. Standfuss, J. Spence, “Serial crystallography at synchrotrons and X-ray lasers”, IUCrJ, 4 (2017), 100–101 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S2052252517001877'>10.1107/S2052252517001877</ext-link>
[9] A. Aquila, A. Barty, C. Bostedt, S. Boutet, G. Carini, D. dePonte, P. Drell, S. Doniach, K. H. Downing, T. Earnest et al, “The linac coherent light source single particle imaging road map”, Structural Dynamics, 2 (2015) <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.4918726'>10.1063/1.4918726</ext-link>
[10] K. Ayyer, G. Geloni, V. Kocharyan, E. Saldin, S. Serkez, O. Yefanov, I. Zagorodnov, “Perspectives for imaging single protein molecules with the present design of the European XFEL”, Structural Dynamics, 2 (2015) <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.4919301'>10.1063/1.4919301</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1310.60105'>1310.60105</ext-link>
[11] B. J. Daurer, K. Okamoto, J. Bielecki, F. R.N. C. Maia, K. Muhlig, M. M. Seibert, M. F. Hantke, C. Nettelblad, W. H. Benner, M. Svenda et al, “Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses”, IUCrJ, 4 (2017), 251–262 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S2052252517003591'>10.1107/S2052252517003591</ext-link>
[12] V. Y. Lunin, N. L. Lunina, T. E. Petrova, “The biological crystallography without crystals”, Mathematical Biology and Bioinformatics, 12:1 (2017), 55–72 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2017.12.55'>10.17537/2017.12.55</ext-link>
[13] V. Y. Lunin, “Mask-based approach to restoring and phasing single-particle diffraction data”, 32nd European Crystallographic Meeting, Abstract Booklet (Vienna, Austria, August 18-23), 2019, 138
[14] V. Y. Lunin, N. L. Lunina, T. E. Petrova, “Single particle study by X-ray diffraction: Crystallographic approach”, Mathematical Biology and Bioinformatics, 14:2 (2019), 500–516 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2019.14.500'>10.17537/2019.14.500</ext-link>
[15] L. Urzhumtseva, B. Klaholz, A. Urzhumtsev, “On effective and optical resolutions of diffraction data sets”, Acta Crystallographica D, 69 (2013), 1921–1934 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0907444913016673'>10.1107/S0907444913016673</ext-link>
[16] A. Kucukelbir, F. J. Sigworth, H. D. Tagare, “Quantifying the local resolution of cryo-EM density maps”, Nature Methods, 11 (2014), 63–65 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nmeth.2727'>10.1038/nmeth.2727</ext-link>
[17] P. V. Afonine, B. P. Klaholz, N. W. Moriarty, B. K. Poon, O. V. Sobolev, T. C. Terwilliger, P. D. Adams, A. Urzhumtsev, Acta Crystallographica D, 74 (2018), 814–840 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S2059798318009324'>10.1107/S2059798318009324</ext-link>
[18] E. Meijering, “A chronology of interpolation: from ancient astronomy to modern signal and image processing”, Proceedings of the IEEE, 90 (2002), 319–342 <ext-link ext-link-type='doi' href='https://doi.org/10.1109/5.993400'>10.1109/5.993400</ext-link>
[19] V. A. Kotel'nikov, “On the transmission capacity of 'ether' and wire in electric communications”, Physics-Uspekhi, 49:7 (2006), 736–744 <ext-link ext-link-type='doi' href='https://doi.org/10.1070/PU2006v049n07ABEH006160'>10.1070/PU2006v049n07ABEH006160</ext-link>
[20] D. Sayre, “Some implications of a theorem due to Shannon”, Acta Crystallographica, 5 (1952), 843 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0365110X52002276'>10.1107/S0365110X52002276</ext-link>
[21] G. Bricogne, “Geometric sources of redundancy in intensity data and their use for phase determination”, Acta Crystallographica A, 30 (1974), 395–405 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0567739474010722'>10.1107/S0567739474010722</ext-link>
[22] G. Bricogne, “Methods and programs for direct-space exploitation of geometric redundancies”, Acta Crystallographica A, 32 (1976), 832–847 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0567739476001691'>10.1107/S0567739476001691</ext-link>
[23] V. Y. Lunin, N. L. Lunina, “Repairing of the diffraction pattern in the X-ray free electron laser study of biological particles”, Advanced Mathematical Models & Applications, 3 (2018), 117–127
[24] V. Y. Lunin, “Use of the fast differentiation algorithm for phase refinement in protein crystallography”, Acta Crystallographica A, 41 (1985), 551–556 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0108767385001209'>10.1107/S0108767385001209</ext-link>
[25] A. D. Podjarny, B. Rees, A. G. Urzhumtsev, “Density modification in X-ray crystallography”, Crystallographic Methods and Protocols, Methods in Molecular Biology, 56, eds. Jones C., Milloy B., Sanderson M. R., Humana Press, Totowa, New Jersey, 1996, 205–226 <ext-link ext-link-type='doi' href='https://doi.org/10.1385/0-89603-259-0:205'>10.1385/0-89603-259-0:205</ext-link>
[26] K. Y.J. Zhang, K. D. Cowtan, P. Main, “Phase improvement by iterative density modification”, International Tables for Crystallography, v. F, eds. E. Arnold, D. M. Himmel, M. G. Rossmann, John Wiley and Sons, Chichester, 2012, 385–400 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/97809553602060000847'>10.1107/97809553602060000847</ext-link>
[27] B. C. Wang, “Resolution of phase ambiguity in macromolecular crystallography”, Methods in Enzymology, 115 (1985), 90–111 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0076-6879(85)15009-3'>10.1016/0076-6879(85)15009-3</ext-link>
[28] J. R. Fienup, “Reconstruction of an object from the modulus of its Fourier transform”, Optics Letters, 3:1 (1978), 27–29 <ext-link ext-link-type='doi' href='https://doi.org/10.1364/OL.3.000027'>10.1364/OL.3.000027</ext-link>
[29] S. Marchesini, “A unified evaluation of iterative projection algorithms for phase retrieval”, Rev. Sci. Instrum., 78 (2007), 011301 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.2403783'>10.1063/1.2403783</ext-link>
[30] R. Millane, V. L. Lo, “Iterative projection algorithms in protein crystallography. I. Theory”, Acta Crystallographica A, 69 (2013), 517–527 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0108767313015249'>10.1107/S0108767313015249</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3103552'>3103552</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1284.05303'>1284.05303</ext-link>
[31] J. P. Abrahams, “Bias reduction in phase refinement by modified interference functions: introducing the $\gamma$-correction”, Acta Crystallographica D, 53 (1997), 371–376 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0907444996015272'>10.1107/S0907444996015272</ext-link>
[32] G. Oslányi, A. Sütő, “Ab initio structure solution by charge flipping”, Acta Crystallographica A, 60 (2004), 134–141 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0108767303027569'>10.1107/S0108767303027569</ext-link>
[33] F. R. N. C. Maia, T. Ekeberg, D. Spoel, J. Hajdu, “Hawk: the image reconstruction package for coherent X-ray diffractive imaging”, J. Applied Crystallography, 43 (2010), 1535–1539 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0021889810036083'>10.1107/S0021889810036083</ext-link>
[34] A. G. Urzhumtsev, The use of local averaging in analysis of macromolecule images at electron density distribution maps, Preprint, Pushchino, 1985 (in Russ.)
[35] A. G. Urzhumtsev, V. Y. Lunin, T. B. Luzyanina, “Bounding a Molecule in a Noisy Synthesis”, Acta Crystallographica A, 45 (1989), 34–39 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/s0108767388008955'>10.1107/s0108767388008955</ext-link>
[36] S. Marchesini, H. He, H. N. Chapman, S. P. Hau-Riege, A. Noy, M. R. Howells, U. Weierstall, J. H.C. Spence, “X-ray image reconstruction from a diffraction pattern alone”, Phis. Rev. B, 68 (2003), 140101(R) <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevB.68.140101'>10.1103/PhysRevB.68.140101</ext-link>
[37] V. Y. Lunin, N. L. Lunina, T. E. Petrova, M. W. Baumstark, A. G. Urzhumtsev, “Mask-based approach to phasing of single-particle diffraction data”, Acta Crystallographica D, 72 (2016), 147–157 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S2059798315022652'>10.1107/S2059798315022652</ext-link>
[38] V. Y. Lunin, N. L. Lunina, T. E. Petrova, “The use of connected masks for reconstructing the single particle image from X-ray diffraction data”, Mathematical Biology and Bioinformatics, 10, Suppl. (2014), t1–t19 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2015.10.t1'>10.17537/2015.10.t1</ext-link>
[39] B. W. Matthews, “Solvent Content of Protein Crystals”, Journal of Molecular Biology, 33 (1968), 491–497 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0022-2836(68)90205-2'>10.1016/0022-2836(68)90205-2</ext-link>
[40] C. X. Weichenberger, P. V. Afonine, K. Kantardjieff, B. Rupp, Acta Crystallographica D, 71 (2015), 1023–1038 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S1399004715006045'>10.1107/S1399004715006045</ext-link>
[41] V. Y. Lunin, N. L. Lunina, T. E. Petrova, M. W. Baumstark, A. G. Urzhumtsev, “Mask-based approach to phasing of single-particle diffraction data. II. Likelihood-based selection criteria”, Acta Crystallographica D, 75 (2019), 79–89 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S2059798318016959'>10.1107/S2059798318016959</ext-link>
[42] N. L. Lunina, T. E. Petrova, A. G. Urzhumtsev, V. Y. Lunin, “The Use of Connected Masks for Reconstructing the Single Particle Image from X-Ray Diffraction Data. III. Maximum-Likelihood Based Strategies to Select Solution of the Phase Problem”, Mathematical Biology and Bioinformatics, 13, Supl. (2018), t70–t83 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2018.13.t70'>10.17537/2018.13.t70</ext-link>
[43] V. Y. Lunin, M. M. Woolfson, “Mean Phase Error and the Map Correlation Coefficient”, Acta Crystallographica D, 49 (1993), 530–533 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0907444993005852'>10.1107/S0907444993005852</ext-link>
[44] M. Broser, A. Gabdulkhakov, J. Kern, A. Guskov, F. Müh, W. Saenger, A. Zouni, “Crystal structure of monomeric Photosystem II from Thermosynechococcus elongatus at 3.6 Å resolution”, J. Biol. Chem., 285 (2010), 26255–26262 <ext-link ext-link-type='doi' href='https://doi.org/10.1074/jbc.M110.127589'>10.1074/jbc.M110.127589</ext-link>
[45] P. Jordan, P. Fromme, H. T. Witt, O. Klukas, W. Saenger, N. Krauß, “Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution”, Nature, 411 (2001), 909–917 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/35082000'>10.1038/35082000</ext-link>
[46] N. L. Lunina, T. E. Petrova, A. G. Urzhumtsev, V. Y. Lunin, “The use of connected masks for reconstructing the single particle image from X-ray diffraction data. II. The dependence of the accuracy of the solution on the sampling step of experimental data”, Mathematical Biology and Bioinformatics, 10, Suppl. (2015), t56–t72 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2015.10.t56'>10.17537/2015.10.t56</ext-link>
[47] M. Van Heel, M. Schatz, “Fourier shell correlation threshold criteria”, J. Struct. Biol., 151 (2005), 250–262 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jsb.2005.05.009'>10.1016/j.jsb.2005.05.009</ext-link>
[48] M. Van Heel, M. Schatz, Reassessing the Revolution's Resolutions, bioRxiv, No 224402, 2017 <ext-link ext-link-type='doi' href='https://doi.org/10.1101/224402'>10.1101/224402</ext-link>