Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2020_15_3_a3, author = {G. P. Neverova and O. L. Zhdanova and E. Ya. Frisman}, title = {Dynamics of predator-prey community with age structures and its changing due to harvesting}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {t35--t51}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2020_15_3_a3/} }
TY - JOUR AU - G. P. Neverova AU - O. L. Zhdanova AU - E. Ya. Frisman TI - Dynamics of predator-prey community with age structures and its changing due to harvesting JO - Matematičeskaâ biologiâ i bioinformatika PY - 2020 SP - t35 EP - t51 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2020_15_3_a3/ LA - en ID - MBB_2020_15_3_a3 ER -
%0 Journal Article %A G. P. Neverova %A O. L. Zhdanova %A E. Ya. Frisman %T Dynamics of predator-prey community with age structures and its changing due to harvesting %J Matematičeskaâ biologiâ i bioinformatika %D 2020 %P t35-t51 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2020_15_3_a3/ %G en %F MBB_2020_15_3_a3
G. P. Neverova; O. L. Zhdanova; E. Ya. Frisman. Dynamics of predator-prey community with age structures and its changing due to harvesting. Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020) no. 3, pp. t35-t51. http://geodesic.mathdoc.fr/item/MBB_2020_15_3_a3/
[1] A. J. Lotka, Analytical theory of biological populations, Springer Science Business Media, 1998, 220 pp. | MR | MR
[2] V. Volterra, Leçons sur la théorie mathématique de la lutte pour la vie, Gauthier-Villars, Paris, 1931 | MR | MR
[3] Yu. V. Tyutyunov, L. I. Titova, “From Lotka–Volterra to Arditi–Ginzburg: 90 years of evolving trophic functions”, Biology Bulletin Reviews, 79:6 (2018), 428–448
[4] C. S. Holling, “The functional response of predators to prey density and its role in mimicry and population regulation”, Mem. Ent. Soc. Can., 45 (1965), 1–60
[5] H. Caswell, Matrix Population Models: Construction, Analysis, and Interpretation, Sinauer Associates. Inc., Sunderland, MA, 2001
[6] A.D. Bazykin, Mathematical biophysics of interacting populations, M., 1985, 181 pp. (in Russ.) | MR | Zbl | MR | Zbl
[7] J. L. Sabo, “Stochasticity, predator-prey dynamics, and trigger harvest of nonnative predators”, Ecology, 86:9 (2005), 2329–2343 | DOI | DOI
[8] E.V. Pacht, A.I. Abakumov, “Uncertainty at modelling of a lake's ecosystem”, Mathematical Biology and Bioinformatics, 6:1 (2011), 102–114 | DOI | DOI
[9] I.A. Bashkirtseva, P.V. Boyarshinova, T.V. Ryazanova, L.B. Ryashko, “Analysis of noise-induced destruction of coexistence regimes in “prey-predator” population model”, Computer Research and Modeling, 8:4 (2016), 647–660 | DOI | DOI
[10] E.P. Abramova, T.V. Ryazanova, “Dynamic regimes of the stochastic “prey–predatory” model with competition and saturation”, Computer Research and Modeling, 11:3 (2019), 515–531 | DOI | DOI
[11] Yu.M. Aponin, E.A. Aponina, “Mathematical model of predator – prey system with lower critical prey density”, Computer Research and Modeling, 1:1 (2009), 51–56 | DOI | DOI
[12] C. Xu, Y. Wu, L. Lu, “Permanence and global attractivity in a discrete Lotka-Volterra predator-prey model with delays”, Advances in Difference Equations, 1 (2014), 1–5 | MR | MR
[13] Y.Y. Frisman, M.P. Kulakov, O.L. Revutskaya, O.L. Zhdanova, G.P. Neverova, “The key approaches and review of current researches on dynamics of structured and interacting populations”, Computer Research and Modeling, 11:1 (2019), 119–151 | DOI | DOI
[14] Y. Saito, Y. Takeuchi, “A time-delay model for prey-predator growth with stage structure”, Canadian Applied Mathematics Quarterly, 11:3 (2003), 293–302 | MR | Zbl | MR | Zbl
[15] S. A. Gourley, Y. Kuang, “A stage structured predator-prey model and its dependence on maturation delay and death rate”, Journal of mathematical Biology, 49:2 (2004), 188–200 | DOI | MR | Zbl | DOI | MR | Zbl
[16] X. K. Sun, H. F. Huo, H. Xiang, “Bifurcation and stability analysis in predator-prey model with a stage-structure for predator”, Nonlinear Dynamics, 58:3 (2009), 497–513 | DOI | MR | Zbl | DOI | MR | Zbl
[17] R. Xu, “Global dynamics of a predator-prey model with time delay and stage structure for the prey”, Nonlinear Analysis: Real World Applications, 12:4 (2011), 2151–2162 | DOI | MR | Zbl | DOI | MR | Zbl
[18] K. Chakraborty, S. Jana, T. K. Kar, “Global dynamics and bifurcation in a stage structured prey-predator fishery model with harvesting”, Applied Mathematics and Computation, 218:18 (2012), 9271–9290 | DOI | MR | Zbl | DOI | MR | Zbl
[19] S. Kundu, S. Maitra, “Dynamics of a delayed predator-prey system with stage structure and cooperation for preys”, Chaos, Solitons Fractals, 114 (2018), 453–460 | DOI | MR | Zbl | DOI | MR | Zbl
[20] P. A. Abrams, C. Quince, “The impact of mortality on predator population size and stability in systems with stage-structured prey”, Theoretical Population Biology, 68:4 (2005), 253–266 | DOI | Zbl | DOI | Zbl
[21] S. Khajanchi, S. Banerjee, “Role of constant prey refuge on stage structure predator-prey model with ratio dependent functional response”, Applied Mathematics and Computation, 314 (2017), 193–198 | DOI | MR | Zbl | DOI | MR | Zbl
[22] J. Bhattacharyya, S. Pal, “Stage-structured cannibalism in a ratio-dependent system with constant prey refuge and harvesting of matured predator”, Differential Equations and Dynamical Systems, 24:3 (2016), 345–366 | DOI | MR | Zbl | DOI | MR | Zbl
[23] A.I. Abakumov, O.I. Il'in, N.S. Ivanko, “Game problems of harvesting in a biological community”, Mathematical Game Theory and Applications, 77:4 (2016), 697–707 | MR | MR
[24] A.I. Abakumov, Yu.G. Izrailsky, “The Harvesting Effect on a Fish Population”, Mathematical Biology and Bioinformatics, 11:2 (2016), 191–204 | DOI | DOI
[25] P. Walters, V. Christensen, B. Fulton, A. D. Smith, R. Hilborn, “Predictions from simple predator-prey theory about impacts of harvesting forage fishes”, Ecological modelling, 337 (2016), 272–280 | DOI | DOI
[26] A. I. Abakumov, O. I. Il'in, N. S. Ivanko, “Game problems of harvesting in a biological community”, Automation and Remote Control, 77:4 (2016), 697–707 | DOI | MR | DOI | MR
[27] C. Liu, Q. Zhang, X. Duan, “Dynamical behavior in a harvested differential-algebraic prey-predator model with discrete time delay and stage structure”, Journal of the Franklin Institute, 346:10 (2009), 1038–1059 | DOI | MR | Zbl | DOI | MR | Zbl
[28] C. Liu, Q. Zhang, X. Zhang, X. Duan, “Dynamical behavior in a stage-structured differential-algebraic prey-predator model with discrete time delay and harvesting”, Journal of Computational and Applied Mathematics, 231:2 (2009), 612–625 | DOI | MR | Zbl | DOI | MR | Zbl
[29] G. Caughley, Analysis of Vertebrate Populations, John Wiley and Sons, 1977
[30] G.P. Neverova, A.I. Abakumov, E.Ya. Frisman, “Dynamic Modes of Limited Structured Population under Age Specific Harvest”, Mathematical Biology and Bioinformatics, 12:2 (2017), 327–342 | DOI | DOI
[31] G. P. Neverova, Abakumov A.I, I. P. Yarovenko, E. Ya. Frisman, “Mode change in the dynamics of exploited limited population with age structure”, Nonlinear Dynamics, 94 (2018), 827–844 | DOI | DOI
[32] O.L. Revutskaya, G.P. Neverova, E.Ya. Frisman, “Influence of Harvest on the Dynamics of Populations with Age and Sex Structures”, Mathematical Biology and Bioinformatics, 13:1 (2018), 270–289 | DOI | DOI
[33] H. N. Agiza, E. M. Elabbasy, H. El-Metwally, A. A. Elsadany, “Chaotic dynamics of a discrete prey-predator model with Holling type II”, Nonlinear Analysis: Real World Applications, 10:1 (2009), 116–129 | DOI | MR | Zbl | DOI | MR | Zbl
[34] Z. Hu, Z. Teng, L. Zhang, “Stability and bifurcation analysis of a discrete predator-prey model with nonmonotonic functional response”, Nonlinear Analysis: Real World Applications, 12:4 (2011), 2356–2377 | DOI | MR | Zbl | DOI | MR | Zbl
[35] J. Zhao, Y. Yan, “Stability and bifurcation analysis of a discrete predator-prey system with modified Holling-Tanner functional response”, Advances in Difference Equations, 2018, 402 | DOI | MR | DOI | MR
[36] D. P. Mistro, L. A.D. Rodrigues, S. Petrovskii, “Spatiotemporal complexity of biological invasion in a space- and time-discrete predator-prey system with the strong Allee effect”, Ecological Complexity, 9 (2012), 16–32 | DOI | MR | DOI | MR
[37] T. Huang, H. Zhang, “Bifurcation, chaos and pattern formation in a space-and time-discrete predator-prey system”, Chaos, Solitons Fractals, 91 (2016), 92–107 | DOI | MR | Zbl | DOI | MR | Zbl
[38] T. Huang, H. Zhang, H. Yang, N. Wang, F. Zhang, “Complex patterns in a space-and time-discrete predator-prey model with Beddington-DeAngelis functional response”, Communications in Nonlinear Science and Numerical Simulation, 43 (2017), 182–199 | DOI | MR | Zbl | DOI | MR | Zbl
[39] J. Zhong, Z. Yu, “Qualitative properties and bifurcations of Mistro-Rodrigues-Petrovskii model”, Nonlinear Dynamics, 91:4 (2018), 2063–2075 | DOI | Zbl | DOI | Zbl
[40] J. R. Reimer, H. Brown, E. Beltaos-Kerr, G. de Vries, “Evidence of intraspecific prey switching: stage-structured predation of polar bears on ringed seals”, Oecologia, 189:1 (2018), 133–148 | DOI | DOI
[41] A. Wikan, Ø. Kristensen, “Prey-Predator Interactions in Two and Three Species Population Models”, Discrete Dynamics in Nature and Society, 2019 (2019), 1–14 | DOI | MR | DOI | MR
[42] C. C. Wilmers, E. Post, A. Hastings, “The anatomy of predator-prey dynamics in a changing climate”, Journal of Animal Ecology, 76:6 (2007), 1037–1044 | DOI | DOI
[43] R. Kon, “Multiple attractors in host-parasitoid interactions: Coexistence and extinction”, Mathematical Biosciences, 201:1-2 (2006), 172–183 | DOI | MR | Zbl | DOI | MR | Zbl
[44] O.L. Revutskaya, M.P. Kulakov, E.Ya. Frisman, “Bistability and Bifurcations in Modified Nicholson-Bailey Model with Age-Structure for Prey”, Mathematical Biology and Bioinformatics, 14:1 (2019), 257–278 | DOI | DOI
[45] Y. Kang, D. Armbruster, Y. Kuang, “Dynamics of a plant-herbivore model”, Journal of Biological Dynamics, 2:2 (2008), 89–101 | DOI | MR | Zbl | DOI | MR | Zbl
[46] Y. Kang, D. Armbruster, “Noise and seasonal effects on the dynamics of plant-herbivore models with monotonic plant growth functions”, International Journal of Biomathematics, 4:3 (2011), 255–274 | DOI | MR | Zbl | DOI | MR | Zbl
[47] A. Wikan, “An analysis of discrete stage-structured prey and prey-predator population models”, Discrete Dynamics in Nature and Society, 2017 (2017) | DOI | MR | DOI | MR
[48] M. Basson, M. J. Fogarty, “Harvesting in discrete-time predator-prey systems”, Mathematical biosciences, 141:1 (1997), 41–74 | DOI | Zbl | DOI | Zbl
[49] B. Chen, J. Chen, “Complex dynamic behaviors of a discrete predator-prey model with stage structure and harvesting”, International Journal of Biomathematics, 10:1 (2017), 1750013 | DOI | MR | Zbl | DOI | MR | Zbl
[50] O.L. Zhdanova, G.P. Neverova, E.Ya. Frisman, “Modeling the dynamics of the predatorprey community based on the age structure of the interacting species”, Information Science and Control Systems, 2018, no. 4 (58), 34–45
[51] G.P. Neverova, O.L. Zhdanova, E.Ya. Frisman, “Modeling the Dynamics of PredatorPrey Community with Age Structures”, Mathematical Biology and Bioinformatics, 14:1 (2019), 77–93 | DOI | DOI
[52] G. P. Neverova, O. L. Zhdanova, Bapan Ghosh, E. Ya. Frisman, “Dynamics of a discrete-time stage-structured predator-prey system with Holling type II response function”, Nonlinear dynamics, 98:1 (2019), 427–446 | DOI | Zbl | DOI | Zbl
[53] A. Angerbjorn, M. Tannerfeldt, S. Erlinge, “Predator-prey relationships: arctic foxes and lemmings”, Journal of Animal Ecology, 68:1 (1999), 34–49 | DOI | DOI
[54] A.P. Kuznetsov, A.V. Savin, Y.V. Sedova, L.V. Tyuryukina, Bifurcation of Images, Press Center Ltd “Nauka”, Saratov, 2012, 196 pp. (in Russ.)
[55] P. Hersteinsson, D. W. Macdonald, “Diet of Arctic foxes (Alopex lagopus) in Iceland”, J. Zool., 240 (1996), 457–474 | DOI | DOI