Modeling spike-wave discharges in the brain with small neurooscillator networks
Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020) no. 2, pp. 138-147.

Voir la notice de l'article provenant de la source Math-Net.Ru

Pathology of coupling architecture in the thalamo-cortical system is considered to be the main cause of absence epilepsy, which eletroencephalographic primary manifestation is spike-wave discharges. The onset of discharge may be An increase of intracortical connectivity or external stimulation of the cortex or thalamus can be an immediate trigger for discharge onset. At the same time, the mechanisms of discharge termination are still not clear; so from the point of view of the dynamical system theory, the spike-wave discharge can be considered as a long transient process. In this paper, we propose a simple mathematical model of 14 identical Fitzhugh–Nagumo neurons, organized in accordance with modern ideas about the thalamo-cortical brain network. In this model long transients in response to short-term pulse driving from a separate neuron, representing the nervus trigeminus, are shown to be possible. Bifurcation analysis reveals such transients to develop in the system in the vicinity of the bifurcation of the cycle birth from the condensation of phase trajectories. The model should be useful as part of more detailed models of the thalamo-cortical system created for fundamental purposes, as well as it can be used to test the effects of electrical brain stimulation, pharmacological effects, and to test methods for evaluating connectivity in the brain.
@article{MBB_2020_15_2_a9,
     author = {A. A. Kapustnikov and M. V. Sysoeva and I. V. Sysoev},
     title = {Modeling spike-wave discharges in the brain with small neurooscillator networks},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {138--147},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a9/}
}
TY  - JOUR
AU  - A. A. Kapustnikov
AU  - M. V. Sysoeva
AU  - I. V. Sysoev
TI  - Modeling spike-wave discharges in the brain with small neurooscillator networks
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2020
SP  - 138
EP  - 147
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a9/
LA  - ru
ID  - MBB_2020_15_2_a9
ER  - 
%0 Journal Article
%A A. A. Kapustnikov
%A M. V. Sysoeva
%A I. V. Sysoev
%T Modeling spike-wave discharges in the brain with small neurooscillator networks
%J Matematičeskaâ biologiâ i bioinformatika
%D 2020
%P 138-147
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a9/
%G ru
%F MBB_2020_15_2_a9
A. A. Kapustnikov; M. V. Sysoeva; I. V. Sysoev. Modeling spike-wave discharges in the brain with small neurooscillator networks. Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020) no. 2, pp. 138-147. http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a9/

[1] M. Helal, E. Hingant, L. Pujo-Menjouet, G. F. Webb, “Alzheimer's disease: analysis of a mathematical model incorporating the role of prions”, Journal of Mathematical Biology, 69 (2014), 1207–1235 | DOI | MR | Zbl

[2] C. J. Stam, B. Jelles, H. A. M. Achtereekte, S. A. R. B. Rombouts, J. P. J. Slaets, R. W. M. Keunen, “Investigation of EEG non-linearity in dementia and Parkinson's disease”, Electroencephalography and Clinical Neurophysiology, 95:5 (1995), 309–317 | DOI

[3] J. H. Proske, D. Jeanmonod, P. F. Verschure, “A Computational Model of Thalamocortical Dysrhythmia”, The European Journal of Neuroscience, 33:7 (2011), 1281–1290 | DOI

[4] A. Destexhe, “Spike-and-wave oscillations based on the properties of GABAB receptors”, Journal of Neuroscience, 18 (1998), 9099–9111 | DOI

[5] V. A. Karlov, V. V. Gnezditski, Absence epilepsy in children and rats, Presservis, 2005

[6] A. B. Volnova, D. N. Lenkov, “Absence epilepsy: mechanisms of hypersynchronization of neuronal networks”, Medical Academic Journal, 12:1 (2012), 7–19

[7] P. Suffczynski, S. Kalitzin, F. Lopes da Silva, “Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network”, Neuroscience, 126:2 (2004), 467–484 | DOI

[8] P. N. Taylor, Y. Wang, M. Goodfellow, J. Dauwels, F. Moeller, U. Stephani, G. Baier, “A Computational Study of Stimulus Driven Epileptic Seizure Abatement”, PLoS ONE, 9:12 (2014), e114316 | DOI

[9] A. Destexhe, “Network models of absence seizures”, Neuronal Networks in Brain Function, CNS Disorders, and Therapeutics, Academic Press, 2014, 11–35 | DOI

[10] T. M. Medvedeva, M. V. Sysoeva, G. van Luijtelaar, I. V. Sysoev, “Modeling spike-wave discharges by a complex network of neuronal oscillators”, Neural Networks, 98 (2018), 271–282 | DOI | MR

[11] A. V. Kolosov, I. V. Nujdel, V. G. Yakhno, “Research of dynamic modes in the mathematical model of elementary thalamocortical cell”, Izvestiya VUZ. Applied Nonlinear Dynamics, 24:5 (2016), 72–83 | DOI

[12] G. D. Kuznetsova, D. E. Pelinovskij, V. G. Yakhno, “Mathematical models of the dynamics of the spreading depression waves in cerebrum cortex”, Izvestiya VUZ. Applied Nonlinear Dynamics, 2:3 (1994), 86–99

[13] K. Abbasova, S. Chepurnov, N. Chepurnova, G. van Luijtelaar, “The role of perioral afferentation in the occurrence of spike-wave discharges in the WAG/Rij model of absence epilepsy”, Brain Research, 1366 (2010), 257–262 | DOI

[14] A. Lüttjohann, G. van Luijtelaar, “The dynamics of cortico-thalamo-cortical interactions at the transition from pre-ictal to ictal LFPs in absence epilepsy”, Neurobiology of Disease, 47 (2012), 47–60 | DOI

[15] M. V. Sysoeva, A. Lüttjohann, G. van Luijtelaar, I. V. Sysoev, “Dynamics of directional coupling underlying spike-wave discharges”, Neuroscience, 314 (2016), 75–89 | DOI

[16] A. Lüttjohann, G. van Luijtelaar, “Dynamics of networks during absence seizure's onand offset in rodents and man”, Frontiers in Physiology, 6 (2015), 16 | DOI

[17] R. FitzHugh, “Impulses and physiological states in theoretical models of nerve membrane”, Biophysical Journal, 1 (1961), 445–466 | DOI

[18] J. Nagumo, S. Arimoto, S. Yoshizawa, “An active pulse transmission line simulating nerve axon”, Proceedings of the IRE, 50 (1962), 2061–2070 | DOI

[19] M. A. Dahlem, G. Hiller, A. Panchuk, E. Schöll, “Dynamics of delay-coupled excitable neural systems”, International Journal of Bifurcation and Chaos, 19:2 (2009), 745–753 | DOI | MR | Zbl

[20] D. D. Kulminskiy, V. I. Ponomarenko, M. D. Prokhorov, A. E. Hramov, “Synchronization in ensembles of delay-coupled nonidentical neuronlike oscillators”, Nonlinear Dynamics, 98:1 (2019), 735–748 | DOI

[21] T. M. Medvedeva, M. V. Sysoeva, I. V. Sysoev, “Coupling analysis between thalamus and cortex in mesoscale model of spike-wave discharges from time series of summarized activity of model neurons”, 2nd School on Dynamics of Complex Networks and their Application in Intellectual Robotics, DCNAIR 2018, IEEE, 2018, 137–138 | DOI

[22] W. van Drongelen, H. C. Lee, M. Hereld, Zh. Chen, F. P. Elsen, R. L. Stevens, “Emergent epileptiform activity in neural networks with weak excitatory synapses”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 13:2 (2005), 236–241 | DOI

[23] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright et al., “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python”, Nature Methods, 17 (2020), 261–272 | DOI

[24] C. Morris, H. Lecar, “Voltage oscillations in the barnacle giant muscle fiber”, Biophys. J., 35:1 (1981), 193–213 | DOI

[25] J. L. Hindmarsh, R. M. Rose, “A model of neuronal bursting using three coupled first order differential equations”, Proc. R. Soc. Lond. B, 221:1222 (1984), 87–102 | DOI

[26] A. S. Dmitrichev, D. V. Kasatkin, V. V. Klinshov, S. Yu. Kirillov, O. V. Maslennikov, D. S. Shchapin, V. I. Nekorkin, Izvestiya VUZ. Applied Nonlinear Dynamics, 26:4 (2018), 5–58 | DOI

[27] A. Sargsyan, E. Sitnikova, A. Melkonyan, H. Mkrtchian, G. van Luijtelaar, Journal of Neuroscience Methods, 164:1 (2007), 161–176 | DOI

[28] M. V. Sysoeva, G. D. Kuznetsova, I. V. Sysoev, “The modeling of rat EEG signals in absence epilepsy in the analysis of brain connectivity”, Biophysics, 61:4 (2016), 661–669 | DOI

[29] H. Meeren, G. van Luijtelaar, F. Lopes da Silva, A. Coenen, “Evolving concepts on the pathophysiology of absence seizures: the cortical focus theory”, Archives of Neurology, 62 (2005), 371–376 | DOI