DNA model with non-local inter-site interaction in collisional thermostat
Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020) no. 2, pp. 129-137.

Voir la notice de l'article provenant de la source Math-Net.Ru

A modified Peyrard–Bishop–Dauxios model with non-local nature of the inter-site potential was studied in a collisional thermostat with a Maxwell velocity distribution of short-lived virtual particles at a temperature of 310 K. Introduction of non-locality to the inter-site potential was found to reduce significantly the equilibrium constants for the denaturation bubble formation reaction. This property improves the agreement of calculated data with experiments. The effect is especially pronounced for large bubbles. The end effects in the new version of the model are investigated. The significant contribution of entropy and the important role of the processes of transfer and localization of mechanical energy at the end sections of DNA are shown.
@article{MBB_2020_15_2_a8,
     author = {A. S. Shigaev and I. V. Likhachev and V. D. Lakhno},
     title = {DNA model with non-local inter-site interaction in collisional thermostat},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {129--137},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a8/}
}
TY  - JOUR
AU  - A. S. Shigaev
AU  - I. V. Likhachev
AU  - V. D. Lakhno
TI  - DNA model with non-local inter-site interaction in collisional thermostat
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2020
SP  - 129
EP  - 137
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a8/
LA  - ru
ID  - MBB_2020_15_2_a8
ER  - 
%0 Journal Article
%A A. S. Shigaev
%A I. V. Likhachev
%A V. D. Lakhno
%T DNA model with non-local inter-site interaction in collisional thermostat
%J Matematičeskaâ biologiâ i bioinformatika
%D 2020
%P 129-137
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a8/
%G ru
%F MBB_2020_15_2_a8
A. S. Shigaev; I. V. Likhachev; V. D. Lakhno. DNA model with non-local inter-site interaction in collisional thermostat. Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020) no. 2, pp. 129-137. http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a8/

[1] A. S. Shigaev, O. A. Ponomarev, V. D. Lakhno, “Teoreticheskie i eksperimentalnye issledovaniya otkrytykh sostoyanii DNK”, Matematicheskaya biologiya i bioinformatika, 8:2 (2013), 553–664 | DOI | MR

[2] A. Feklistov, S. A. Darst, “Structural basis for promoter-10 element recognition by the bacterial RNA polymerase sigma subunit”, Cell, 147 (2011), 1257–1269 | DOI

[3] X. Liu, D. A. Bushnell, R. D. Kornberg, “Lock and key to transcription: sigma-DNA interaction”, Cell, 147 (2011), 1218–1219 | DOI

[4] T. Dauxois, M. Peyrard, A. R. Bishop, “Entropy-driven DNA denaturation”, Physical Review E, 47 (1993), R44–R47 | DOI

[5] J. J.-L. Ting, M. Peyrard, “Effective breather trapping mechanism for DNA transcription”, Physical Review E, 53 (1996), 1011–1020 | DOI

[6] P. V. Larsen, P. L. Christiansen, O. Bang, J. F.R. Archilla, Yu. B. Gaididei, “Energy funneling in a bent chain of Morse oscillators with long-range coupling”, Physical Review E, 69 (2004), 026603 | DOI

[7] S. Ares, G. Kalosakas, “Distribution of Bubble Lengths in DNA”, Nano Letters, 7 (2007), 307–311 | DOI

[8] M. Kochoyan, J. L. Leroy, M. Gueron, “Proton Exchange and Base-pair Lifetimes in a Deoxy-duplex Containing a Purine-Pyrimidine Step and in the Duplex of Inverse Sequence”, Journal of Molecular Biology, 196 (1987), 599–609 | DOI

[9] A. Campa, A. Giansanti, “Experimental tests of the Peyrard-Bishop model applied to the melting of very short DNA chains”, Physical Review E, 58 (1998), 3585–3588 | DOI

[10] A. K. Tewari, R. Dubey, “Emerging trends in molecular recognition: utility of weak aromatic interactions”, Bioorganic Medicinal Chemistry, 16 (2008), 126–143 | DOI

[11] F. Gago, “Stacking Interactions and Intercalative DNA Binding”, Methods, 14 (1998), 277–292 | DOI

[12] E. I. Geraskin, V. D. Lakhno, A. P. Chetverikov, A. S. Shigaev, “Issledovanie brizernoi dinamiki DNK v modeli s nelokalnoi svyazyu mezhdu nukleotidnymi parami”, Matematicheskaya biologiya i bioinformatika, 15:1 (2020), 93–105 | DOI

[13] N. K. Balabaev, A. S. Lemak, “Molecular-dynamics of linear polymer in hydrodynamic flow”, J. Phys. Chem., 69 (1995), 28–32

[14] A. S. Lemak, N. K. Balabaev, “A comparison between collisional dynamics and brownian dynamics”, Molecular Simulation, 15 (1995), 223–231 | DOI

[15] A. S. Lemak, N. K. Balabaev, “Molecular dynamics simulation of polymer chain in solution by collisional dynamics method”, J. Comput. Chem., 17 (1996), 1685–1695 | 3.0.co;2-l class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[16] C. H. Choi, G. Kalosakas, K. O. Rasmussen, M. Hiromura, A. R. Bishop, A. Usheva, “DNA dynamically directs its own transcription initiation”, Nucleic Acids Research, 32 (2004), 1584–1590 | DOI

[17] I. V. Likhachev, V. D. Lakhno, Investigation of DNA denaturation in Peyrard-Bishop-Dauxois model by molecular dynamics method, 2018, 6 pp., arXiv: 1811.03405 [cond-mat.soft] | DOI | Zbl

[18] I. V. Likhachev, V. D. Lakhno, “The direct investigation of DNA denaturation in Peyrard-Bishop-Dauxois model by molecular dynamics method”, Chemical Physics Letters, 727 (2019), 55–58 | DOI | MR

[19] I. V. Likhachev, V. D. Lakhno, “Investigation of DNA denaturation in Peyrard-BishopDauxoismodel by molecular dynamics method”, Eur. Phys. J. B, 92 (2019), 253 | DOI

[20] M. Leijon, A. Graslund, “Effects of sequence and length on imino proton exchange and base pair opening kinetics in DNA oligonucleotide duplexes”, Nucleic Acids Research, 20 (1992), 5339–5343 | DOI

[21] S. Nonin, J. L. Leroy, M. Gueron, “Terminal base pairs of oligodeoxynucleotides: imino proton exchange and fraying”, Biochemistry, 34 (1995), 10652–10659 | DOI

[22] V. Sadovnichy, A. Tikhonravov, V. Voevodin, V. Opanasenko, “Lomonosov: Supercomputing at Moscow State University”, Contemporary High Performance Computing: From Petascale toward Exascale, Chapman Hall/CRC Computational Science Series, ed. Vetter J.S., CRC Press, Boca Raton, USA, 2013, 283–307