The numerical model of fish growth dynamics (on the example of okhotsk atka mackerel \emph{Pleurogrammus azonus})
Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020) no. 2, pp. 118-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

A complex model of the system is proposed, the dynamic variables of which are the length, fish's weight and the weight of its food lump. The model’s mathematical formalization is performed in terms of the ordinary differential equations apparatus. The solution to the parametric identification problem of the model is based on the author's representative sample for long-term observations. Computational experiments show that the representation of the indicators dynamics fish’s weight, length and the weight of the food lump is determined by some functions of the components from this set. The hierarchy of relationships between indicators determines the structure of these functions. It turned out that the dynamics of length is practically independent of the food lump’s weight, which in this case is an external energy source of the body's vital activity. The energy “mediator” is body weight. The dynamics of body weight is determined by the weight of the food lump and the actual body weight. The negative coefficient calculated when solving the problem of parametric identification with body weight reduces the intensity of its dynamics. It seems that this coefficient reflects the expenditure of the body on the processes of its metabolism. The dynamics of length has a cumulative character (only positive gains). The body weight dynamics is determined by the accumulation and loss of vital activity of organic matter (positive and negative gains). The jump in the dynamics of weight is due to the high energy costs of fish for the intensive formation of reproductive products in the pre-spawning period and the energy costs of subsequent spawning. The dynamics of the food lump depends on the weight of the fish and is regulated by seasonal endogenous and exogenous rhythms of the fish's life cycle. Weight gain largely determines the intensity of nutrition than the diet determines the rate of weight growth. A measure of the adequacy between the model and sample distributions here is the correlation coefficient between them. In the case under consideration, it is close to its maximum (single) value, which indicates their high proximity.
@article{MBB_2020_15_2_a7,
     author = {A. N. Chetyrbotsky and A. N. Vdovin and V. A. Chetyrbotskiy},
     title = {The numerical model of fish growth dynamics (on the example of okhotsk atka mackerel {\emph{Pleurogrammus} azonus})},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {118--128},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a7/}
}
TY  - JOUR
AU  - A. N. Chetyrbotsky
AU  - A. N. Vdovin
AU  - V. A. Chetyrbotskiy
TI  - The numerical model of fish growth dynamics (on the example of okhotsk atka mackerel \emph{Pleurogrammus azonus})
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2020
SP  - 118
EP  - 128
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a7/
LA  - ru
ID  - MBB_2020_15_2_a7
ER  - 
%0 Journal Article
%A A. N. Chetyrbotsky
%A A. N. Vdovin
%A V. A. Chetyrbotskiy
%T The numerical model of fish growth dynamics (on the example of okhotsk atka mackerel \emph{Pleurogrammus azonus})
%J Matematičeskaâ biologiâ i bioinformatika
%D 2020
%P 118-128
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a7/
%G ru
%F MBB_2020_15_2_a7
A. N. Chetyrbotsky; A. N. Vdovin; V. A. Chetyrbotskiy. The numerical model of fish growth dynamics (on the example of okhotsk atka mackerel \emph{Pleurogrammus azonus}). Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020) no. 2, pp. 118-128. http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a7/

[1] W. E. Ricker, Computation and interpretation of biological of fish population, The Blackburn Press, Ottawa, 1975, 401 pp.

[2] W. E. Ricker, Growth rates and model. Fish physiology, Academic Press, San Francisco, 1979, 743 pp.

[3] L. Bertalanfy, Fundamental aspects of normal and malignant growth, Elsevier, Amsterdam, 1960, 137–259

[4] K. Enberg, E. S. Dunlop, C. Jørgensen, Ecological models, Princeton University Press, Oxford, 2008, 1564–1572

[5] T. Akamaine, “Non-linear and graphical method for fish stock analysis with statistical modeling”, Aqua-BioSci. Monogr., 2:3, 1–45

[6] A. N. Vdovin, A. N. Chetyrbotskii, “Rost i stadiinost ontogeneza yuzhnogo Odnoperogo terpuga v vodakh Primorya (Yaponskoe more)”, Trudy VNIRO, 170 (2018), 26–46

[7] M. G. Kendall, A. Stuart, The Advanced Theory of Statistics, Wiley Press, New York, 2010, 700 pp. | MR

[8] V. Borovikov, Statistica: Iskusstvo analiza dannykh na kompyutere. Dlya professionalov, Piter, SPb, 2003, 688 pp.

[9] I. Bard, Nelineinoe otsenivanie parametrov, Statistika, M., 1979, 349 pp. | MR

[10] B. Bolch, K. Dzh. Khuan, Mnogomernye statisticheskie svyazi dlya ekonomiki, Statistika, M., 1979, 317 pp.

[11] A. N. Vdovin, A. N. Chetyrbotskii, V. A. Chetyrbotskii, “Kompyuternoe modelirovanie dinamiki rosta ryb (na primere yuzhnogo odnoperogo terpuga Pleurogrammus azonus). Chast 1”, Informatsionnye tekhnologii, 21:2 (2015), 116–120

[12] G. Yu. Riznichenko, A. B. Rubin, Matematicheskie modeli biologicheskikh produktsionnykh protsessov, Izd. MGU, M., 1993, 300

[13] Yu. M. Svirezhev, D. O. Logofet, Ustoichivost biologicheskikh soobschestv, Nauka, M., 1978, 352 pp. | MR

[14] D. R. Brett, T. D.D. Grows, “Physological energetics”, Fish physology, Academic Press, San Francisco, 1979, 280–352

[15] Yu. Yu. Dgebuadze, Ekologicheskie zakonomernosti izmenchivosti rosta ryb, Nauka, M., 1988, 276 pp.

[16] A. A. Yarzhombek, Zakonomernosti rosta promyslovykh ryb, Izdatelstvo VNIRO, Vladivostok, 2011, 182 pp.

[17] V. V. Sukhanov, “Matematicheskaya model sezonnoi dinamiki vesovogo rosta molodi nerki (Oncorhynchus nerka, Walb)”, Vopr. Ikhtiologii, 14:4 (1974), 575–580

[18] S. Brody, Bioenergetics, growth, Hafner, New-York, 1945, 1023 pp.

[19] M. V. Mina, Klevezal, Animal growth. Analysis at the level of the body, Science, New-York, 1976, 291 pp.

[20] R. A. Poluektov, Dinamicheskaya teoriya biologicheskikh populyatsii, Nauka, M., 1974, 286 pp. | MR