Changes in the hippocampal genes transcriptome in depression model mice upon intranasal exposure to M2 macrophage secretome factors
Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020) no. 2, pp. 357-393.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the current report, the effect of bioactive compounds of the M2 macrophage secretome on transcription of hippocampal genes in mice with a depression-like condition caused by social stress has been investigated. Surgically resected hippocampus was used for mRNA isolation with following RNA sequencing procedures. Comparative analysis of transcriptomes from the control depressive mice treated with physiological saline solution and mice after intranasal administration of M2 macrophages-conditioned medium revealed that remission of the depressive-like state is associated with a significant up- and downregulation of a number of genes, which were found to participate in restoration/regulation of ATP/Adenosine balance. Among the events associated with positive changes in behavioral pattern of depressive mice, the switch of microglial environment from a pro-inflammatory phenotype to an anti-inflammatory one, and subsequent restoration of compromised cannabinoid and glutamatergic transmitter pathways has been predicted.
@article{MBB_2020_15_2_a6,
     author = {E. Ya. Shevela and E. V. Markova and M. A. Knyazheva and A. S. Proskurina and Ya. R. Efremov and V. V. Molodtsov and I. A. Seledtsov and A. A. Ostanin and S. S. Bogachev and N. A. Kolchanov and E. R. Chernykh},
     title = {Changes in the hippocampal genes transcriptome in depression model mice upon intranasal exposure to {M2} macrophage secretome factors},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {357--393},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a6/}
}
TY  - JOUR
AU  - E. Ya. Shevela
AU  - E. V. Markova
AU  - M. A. Knyazheva
AU  - A. S. Proskurina
AU  - Ya. R. Efremov
AU  - V. V. Molodtsov
AU  - I. A. Seledtsov
AU  - A. A. Ostanin
AU  - S. S. Bogachev
AU  - N. A. Kolchanov
AU  - E. R. Chernykh
TI  - Changes in the hippocampal genes transcriptome in depression model mice upon intranasal exposure to M2 macrophage secretome factors
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2020
SP  - 357
EP  - 393
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a6/
LA  - ru
ID  - MBB_2020_15_2_a6
ER  - 
%0 Journal Article
%A E. Ya. Shevela
%A E. V. Markova
%A M. A. Knyazheva
%A A. S. Proskurina
%A Ya. R. Efremov
%A V. V. Molodtsov
%A I. A. Seledtsov
%A A. A. Ostanin
%A S. S. Bogachev
%A N. A. Kolchanov
%A E. R. Chernykh
%T Changes in the hippocampal genes transcriptome in depression model mice upon intranasal exposure to M2 macrophage secretome factors
%J Matematičeskaâ biologiâ i bioinformatika
%D 2020
%P 357-393
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a6/
%G ru
%F MBB_2020_15_2_a6
E. Ya. Shevela; E. V. Markova; M. A. Knyazheva; A. S. Proskurina; Ya. R. Efremov; V. V. Molodtsov; I. A. Seledtsov; A. A. Ostanin; S. S. Bogachev; N. A. Kolchanov; E. R. Chernykh. Changes in the hippocampal genes transcriptome in depression model mice upon intranasal exposure to M2 macrophage secretome factors. Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020) no. 2, pp. 357-393. http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a6/

[1] V. Lux, K. S. Kendler, “Deconstructing major depression: A validation study of the DSM-IV symptomatic criteria”, Psychol. Med., 40 (2010), 1679–1690 | DOI

[2] R. F. Zanin, E. Braganhol, L. S. Bergamin, L. F.I. Campesato, A. Z. Filho, J. C.F. Moreira, F. B. Morrone, J. Sévigny, M. R.C. Schetinger, A. T. de Souza Wyse, A. M.O. Battastini, “Differential macrophage activation alters the expression profile of NTPDase and ecto-5'-nucleotidase”, PLoS One, 7 (2012), e31205 | DOI

[3] F. Di Virgilio, S. Ceruti, P. Bramanti, M. P. Abbracchio, “Purinergic signalling in inflammation of the central nervous system”, Trends Neurosci, 32 (2009), 79–87 | DOI

[4] M. P. Abbracchio, S. Ceruti, “P1 receptors and cytokine secretion”, Purinergic Signal, 3 (2007), 13–25 | DOI

[5] G. G. Yegutkin, T. Henttinen, S. S. Samburski, J. Spychala, S. Jalkanen, “The evidence for two opposite, ATP-generating and ATP-consuming, extracellular pathways on endothelial and lymphoid cells”, Biochem. J., 367 (2002), 121–128 | DOI

[6] J. Linden, “Molecular approach to adenosine receptors: receptor-mediated mechanisms of tissue protection”, Annu. Rev. Pharmacol. Toxicol, 41 (2001), 775–787 | DOI

[7] Y. M. Wang, Z. Y. Liu, Y. H. Ai, L. N. Zhang, Y. Zou, Q. Y. Peng, “Blocking the CD38/cADPR pathway plays a double-edged role in LPS stimulated microglia”, Neuroscience, 361 (2017), 34–42 | DOI

[8] A. Cauwels, E. Rogge, B. Vandendriessche, S. Shiva, P. Brouckaert, “Extracellular ATP drives systemic inflammation, tissue damage and mortality”, Cell Death Dis., 5 (2014) | DOI

[9] M. J.L. Bours, E. L.R. Swennen, F. Di Virgilio, B. N. Cronstein, P. C. Dagnelie, “Adenosine 5'-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation”, Pharmacol. Ther., 112 (2006), 358–404 | DOI

[10] M. Solle, J. Labasi, D. G. Perregaux, E. Stam, N. Petrushova, B. H. Koller, R. J. Griffiths, C. A. Gabel, “Altered cytokine production in mice lacking P2X(7) receptors”, J. Biol. Chem., 276 (2001), 125–132 | DOI

[11] R. Coutinho-Silva, J. L. Perfettini, P. M. Persechini, A. Dautry-Varsat, D. M. Ojcius, “Modulation of Z/P2X7 receptor activity in macrophages infected with Chlamydia psittaci”, Am. J. Physiol. - Cell Physiol., 280 (2001), 2 | DOI

[12] G. Haskó, B. N. Cronstein, “Adenosine: An endogenous regulator of innate immunity”, Trends Immunol., 25 (2004), 33–39 | DOI

[13] H. Yamaguchi, T. Maruyama, Y. Urade, S. Nagata, “Immunosuppression via adenosine receptor activation by adenosine monophosphate released from apoptotic cells”, Elife, 3 (2014), e02172 | DOI

[14] L. Dissing-Olesen, J. M. LeDue, R. L. Rungta, J. K. Hefendehl, H. B. Choi, B. A. MacVicar, “Activation of neuronal NMDA receptors triggers transient ATP-mediated microglial process outgrowth”, J. Neurosci., 34 (2014), 10511–10527 | DOI

[15] S. Calovi, P. Mut-Arbona, B. Sperlágh, “Microglia and the Purinergic Signaling System”, Neuroscience, 405 (2019), 137–147 | DOI

[16] L. Janks, C. V.R. Sharma, T. M. Egan, “A central role for X7 receptors in human microglia”, J. Neuroinflammation, 15 (2018), 2 | DOI

[17] T. L. Tay, J. C. Savage, C. W. Hui, K. Bisht, M. È. Tremblay, “Microglia across the lifespan: from origin to function in brain development, plasticity and cognition”, J. Physiol., 595 (2017), 1929–1945 | DOI

[18] Y. Liu, M. Alahiri, B. Ulloa, B. Xie, S. A. Sadiq, “Adenosine A2A receptor agonist ameliorates EAE and correlates with Th1 cytokine-induced blood brain barrier dysfunction via suppression of MLCK signaling pathway”, Immun. Inflamm. Dis., 6 (2018), 72–80 | DOI

[19] T. Korn, A. Kallies, “T cell responses in the central nervous system”, Nat. Rev. Immunol., 17 (2017), 179–194 | DOI

[20] Y. Ogawa, E. Furusawa, T. Saitoh, H. Sugimoto, T. Omori, S. Shimizu, H. Kondo, M. Yamazaki, H. Sakuraba, K. Oishi, “Inhibition of astrocytic adenosine receptor A2A attenuates microglial activation in a mouse model of Sandhoff disease”, Neurobiol. Dis., 118 (2018), 142–154 | DOI

[21] A. Vuorimaa, E. Rissanen, L. Airas, “In Vivo PET Imaging of Adenosine Receptors in Neuroinflammatory and Neurodegenerative Disease”, Contrast Media Mol. Imaging, 2017 (2017), 2 pp. | DOI | MR

[22] L. V. Sakhno, E. Y. Shevela, M. A. Tikhonova, A. A. Ostanin, E. R. Chernykh, “The Phenotypic and Functional Features of Human M2 Macrophages Generated Under Low Serum Conditions”, Scand. J. Immunol., 83 (2016), 151–159 | DOI

[23] K. M. Tye, J. J. Mirzabekov, M. R. Warden, E. A. Ferenczi, H. C. Tsai, J. Finkelstein, S. Y. Kim, A. Adhikari, K. R. Thompson, A. S. Andalman et al, “Dopamine neurons modulate neural encoding and expression of depression-related behaviour”, Nature, 493 (2013), 537–541 | DOI

[24] M. Garcia-Garcia, J. Yordanova, V. Kolev, J. Domínguez-Borràs, C. Escera, “Tuning the brain for novelty detection under emotional threat: the role of increasing gamma phase-synchronization”, Neuroimage, 49 (2010), 1038–1044 | DOI

[25] F. A. Iannotti, V. Di Marzo, S. Petrosino, “Endocannabinoids and endocannabinoid-related mediators: Targets, metabolism and role in neurological disorders”, Prog. Lipid Res., 62 (2016), 107–128 | DOI

[26] J. Y. Xu, C. Chen, “Endocannabinoids in synaptic plasticity and neuroprotection”, Neuroscientist, 21 (2015), 152–168 | DOI

[27] B. D. Heifets, P. E. Castillo, “Endocannabinoid Signaling and Long-Term Synaptic Plasticity”, Annu. Rev. Physiol., 71 (2009), 283–306 | DOI

[28] N. J. Maragakis, J. D. Rothstein, “Glutamate transporters in neurologic disease”, Arch. Neurol., 58 (2001), 365–370 | DOI

[29] K. Szydlowska, M. Tymianski, “Calcium, ischemia, excitotoxicity”, Cell Calcium, 47 (2010), 122–129 | DOI

[30] Yu. S. Mironova, N. G. Zhukova, I. A. Zhukova, V. M. Alifirova, O. P. Izhboldina, A. V. Latypova, “Bolezn Parkinsona i glutamatergicheskaya sistema”, Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova, 118 (2018), 138–142

[31] R. Krishnadas, J. Cavanagh, Depression: An inflammatory illness?, J. Neurol. Neurosurg. Psychiatry, 83 (2012), 495–502 | DOI

[32] R. Dantzer, J. C. O'Connor, G. G. Freund, R. W. Johnson, K. W. Kelley, “From inflammation to sickness and depression: When the immune system subjugates the brain”, Nat. Rev. Neurosci., 9 (2008), 46–56 | DOI

[33] V. N. Babenko, D. A. Smagin, A. G. Galyamina, I. L. Kovalenko, N. N. Kudryavtseva, “Altered Slc25 family gene expression as markers of mitochondrial dysfunction in brain regions under experimental mixed anxiety/depression-like disorder”, BMC Neurosci, 19 (2018), 79 | DOI

[34] B. Almolda, M. Costa, M. Montoya, B. González, B. Castellano, “CD4 microglial expression correlates with spontaneous clinical improvement in the acute Lewis rat EAE model”, J. Neuroimmunol., 209 (2009), 65–80 | DOI

[35] A. Lau, M. Tymianski, “Glutamate receptors, neurotoxicity, neurodegeneration”, Pflugers Arch., 460 (2010), 525–542 | DOI

[36] J. W. Olney, “Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate”, Science, 164 (1969), 719–721 | DOI

[37] A. T. Petkova, R. D. Leapman, Z. Guo, W. M. Yau, M. P. Mattson, R. Tycko, “Self-propagating, molecular-level polymorphism in Alzheimer's beta-amyloid fibrils”, Science, 307 (2005), 262–265 | DOI

[38] P. Paoletti, C. Bellone, Q. Zhou, “NMDA receptor subunit diversity: Impact on receptor properties, synaptic plasticity and disease”, Nat. Rev. Neurosci., 14 (2013), 383–400 | DOI

[39] D. S. Bredt, R. A. Nicoll, “AMPA receptor trafficking at excitatory synapses”, Neuron, 40 (2003), 361–379 | DOI

[40] S. Halpain, J. A. Girault, P. Greengard, “Activation of NMDA receptors induces dephosphorylation of DARPP-32 in rat striatal slices”, Nature, 343 (1990), 369–372 | DOI

[41] A. Nishi, J. A. Bibb, G. L. Snyder, H. Higashi, A. C. Nairn, P. Greengard, “Amplification of dopaminergic signaling by a positive feedback loop”, Proc. Natl. Acad. Sci. USA, 97 (2000), 12840–12845 | DOI

[42] A. Belkhiri, S. Zhu, W. El-Rifai, “DARPP-32: from neurotransmission to cancer”, Oncotarget, 7 (2016), 17631–17640 | DOI

[43] S. Yagishita, A. Hayashi-Takagi, G. C.R. Ellis-Davies, H. Urakubo, S. Ishii, H. Kasai, “A critical time window for dopamine actions on the structural plasticity of dendritic spines”, Science, 345 (2014), 1616–1620 | DOI

[44] A. G. Nair, U. S. Bhalla, J. Hellgren Kotaleski, “Role of DARPP-32 and ARPP-21 in the Emergence of Temporal Constraints on Striatal Calcium and Dopamine Integration”, PLoS Comput. Biol., 12 (2016), e1005080 | DOI

[45] Z. Chen, B. D. Trapp, “Microglia, neuroprotection”, J. Neurochem., 136 (2016), 10–17 | DOI

[46] T. Masuda, R. Sankowski, O. Staszewski, M. Prinz, “Microglia Heterogeneity in the Single-Cell Era”, Cell Rep., 30 (2020), 1271–1281 | DOI

[47] N. Wang, H. Liang, K. Zen, “Molecular mechanisms that influence the macrophage M1-M2 polarization balance”, Front. Immunol., 5 (2014), 614

[48] L. Zhang, J. Zhang, Z. You, “Switching of the Microglial Activation Phenotype Is a Possible Treatment for Depression Disorder”, Front. Cell. Neurosci., 12 (2018), 306 | DOI

[49] R. H. Tang, R. Q. Qi, H. Y. Liu, “Interleukin-4 affects microglial autophagic flux”, Neural Regen. Res., 14 (2019), 1594–1602 | DOI

[50] G. Navarro, D. Borroto-Escuela, E. Angelats, Í. Etayo, I. Reyes-Resina, M. Pulido-Salgado, A. I. Rodríguez-Pérez, E. I. Canela, J. Saura, J. L. Lanciego et al., “Receptor-heteromer mediated regulation of endocannabinoid signaling in activated microglia”, Role of CB1 and CB2 receptors and relevance for Alzheimer's disease and levodopa-induced dyskinesia, 67 (2018), 139–151

[51] G. Navarro, P. Morales, C. Rodríguez-Cueto, J. Fernández-Ruiz, N. Jagerovic, R. Franco, “Targeting cannabinoid CB2 receptors in the central nervous system. Medicinal chemistry approaches with focus on neurodegenerative disorders”, Front. Neurosci., 10 (2016), 406 | DOI

[52] I. Reyes-Resina, G. Navarro, D. Aguinaga, E. I. Canela, C. T. Schoeder, M. Załuski, K. Kieć-Kononowicz, C. A. Saura, C. E. Müller, R. Franco, “Molecular and functional interaction between GPR18 and cannabinoid CB2 G-protein-coupled receptors. Relevance in neurodegenerative diseases”, Biochem. Pharmacol., 157 (2018), 169–179 | DOI

[53] G. G. Muccioli, C. Xu, E. Odah, E. Cudaback, J. A. Cisneros, D. M. Lambert, M. L. López Rodríguez, S. Bajjalieh, N. Stella, “Identification of a novel endocannabinoid-hydrolyzing enzyme expressed by microglial cells”, J. Neurosci., 27 (2007), 2883–2889 | DOI

[54] J. L. Blankman, G. M. Simon, B. F. Cravatt, “A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol”, Chem. Biol., 14 (2007), 1347–1356 | DOI

[55] G. A. Cabral, E. S. Raborn, L. Griffin, J. Dennis, F. Marciano-Cabral, “CB 2 receptors in the brain: Role in central immune function”, Br. J. Pharmacol., 153 (2008), 240–251 | DOI

[56] L. Walter, A. Franklin, A. Witting, C. Wade, Y. Xie, G. Kunos, K. Mackie, N. Stella, “Nonpsychotropic cannabinoid receptors regulate microglial cell migration”, J. Neurosci., 23 (2003), 1398–1405 | DOI

[57] L. Cristino, T. Bisogno, V. Di Marzo, “Cannabinoids and the expanded endocannabinoid system in neurological disorders”, Nat. Rev. Neurol., 16 (2020), 9–29 | DOI

[58] H. C. Lu, K. MacKie, “An introduction to the endogenous cannabinoid system”, Biol. Psychiatry, 79 (2016), 516–525 | DOI

[59] J. R. Savinainen, S. M. Saario, J. T. Laitinen, “The serine hydrolases MAGL, ABHD6 and ABHD12 as guardians of 2-arachidonoylglycerol signalling through cannabinoid receptors”, Acta Physiol. (Oxf)., 204 (2012), 267–276 | DOI

[60] R. Franco, I. Reyes-Resina, D. Aguinaga, A. Lillo, J. Jiménez, I. Raïch, D. O. Borroto-Escuela, C. Ferreiro-Vera, E. I. Canela, V. Sánchez de Medina et al, “Potentiation of cannabinoid signaling in microglia by adenosine A2A receptor antagonists”, Glia, 67 (2019), 2410–2423 | DOI

[61] P. K. Chanda, Y. Gao, L. Mark, J. Btesh, B. W. Strassle, P. Lu, M. J. Piesla, M. Y. Zhang, B. Bingham, A. Uveges et al, “Monoacylglycerol lipase activity is a critical modulator of the tone and integrity of the endocannabinoid system”, Mol. Pharmacol., 78 (2010), 996–1003 | DOI

[62] J. E. Schlosburg, J. L. Blankman, J. Z. Long, D. K. Nomura, B. Pan, S. G. Kinsey, P. T. Nguyen, D. Ramesh, L. Booker, J. J. Burston et al, “Chronic monoacylglycerol lipase blockade causes functional antagonism of the endocannabinoid system”, Nat. Neurosci., 13 (2010), 1113–1119 | DOI

[63] G. G. Szabó, N. Lenkey, N. Holderith, T. Andrási, Z. Nusser, N. Hájos, “Presynaptic calcium channel inhibition underlies CB$_1$ cannabinoid receptor-mediated suppression of GABA release”, J. Neurosci., 34 (2014), 7958–7963 | DOI

[64] S. Gordon, F. O. Martinez, “Alternative activation of macrophages: Mechanism and functions”, Immunity, 32 (2010), 593–604 | DOI

[65] J. Zhou, J. Chen, W. Xu, Y. Liu, Z. Song, Z. Wen, X. Jian, J. Yu, X. Ma, Z. Wang et al, “Common variants in SATB2 are associated with schizophrenia in Uygur Chinese population”, Psychiatr. Genet., 29 (2019), 120–126 | DOI

[66] K. Kawahara, M. Suenobu, A. Yoshida, K. Koga, A. Hyodo, H. Ohtsuka, A. Kuniyasu, N. Tamamaki, Y. Sugimoto, H. Nakayama, “Intracerebral microinjection of interleukin-4/interleukin-13 reduces $\beta$-amyloid accumulation in the ipsilateral side and improves cognitive deficits in young amyloid precursor protein 23 mice”, Neuroscience, 207 (2012), 243–260 | DOI

[67] M.-M. Jin, F. Wang, D. Qi, W.-W. Liu, C. Gu, C. J. Mao, Y. P. Yang, Z. Zhao, L.-F. Hu, C.-F. Liu, “A Critical Role of Autophagy in Regulating Microglia Polarization in Neurodegeneration”, Front. Aging Neurosci., 10 (2018), 378 | DOI

[68] J. Ji, T.-F. Xue, X.-D. Guo, J. Yang, R.-B. Guo, J. Wang, J.-Y. Huang, X.-J. Zhao, X.-L. Sun, “Antagonizing peroxisome proliferator-activated receptor $\gamma$ facilitates M1-to-M2 shift of microglia by enhancing autophagy via the LKB1-AMPK signaling pathway”, Aging Cell, 17 (2018), e12774 | DOI

[69] M. Ries, M. Sastre, “Mechanisms of A$\beta$ clearance and degradation by glial cells”, Front. Aging Neurosci, 8 (2016) | DOI

[70] N. Braun, J. Sévigny, S. C. Robson, K. Enjyoji, O. Guckelberger, K. Hammer, F. Di Virgilio, H. Zimmermann, “Assignment of ecto-nucleoside triphosphate diphosphohydrolase-1/cd39 expression to microglia and vasculature of the brain”, Eur. J. Neurosci., 12 (2000), 4357–4366

[71] P. N. Kravchenko, E. K. Oleinik, “Sistema regulyatornykh T-kletok i autoimmunnye protsessy”, Trudy Karelskogo nauchnogo tsentra Rossiiskoi akademii nauk, 2013, 18–30

[72] L. A. Tashireva, V. M. Perelmuter, V. N. Manskikh, E. V. Denisov, O. E. Saveleva, E. V. Kaigorodova, M. V. Zavyalova, “Tipy immunovospalitelnykh reaktsii kak algoritmy vzaimodeistviya kletok v usloviyakh reparativnoi regeneratsii i opukholevogo rosta”, Biokhimiya, 82 (2017), 732–748

[73] L.-M. Wang, Y. Zhang, X. Li, M.-L. Zhang, L. Zhu, G.-X. Zhang, Y.-M. Xu, “Nr4a1 plays a crucial modulatory role in Th1/Th17 cell responses and CNS autoimmunity”, Brain. Behav. Immun., 68 (2018), 44–55 | DOI

[74] D. J. Araujo, K. Toriumi, C. O. Escamilla, A. Kulkarni, A. G. Anderson, M. Harper, N. Usui, J. Ellegood, J. P. Lerch, S. G. Birnbaum et al, “Foxp1 in forebrain pyramidal neurons controls gene expression required for spatial learning and synaptic plasticity”, J. Neurosci., 37 (2017), 10917–10931 | DOI

[75] L. Shen, H. S. Nam, P. Song, H. Moore, S. A. Anderson, “FoxG1 haploinsufficiency results in impaired neurogenesis in the postnatal hippocampus and contextual memory deficits”, Hippocampus, 16 (2006), 875–890 | DOI

[76] J. D. Hawk, T. Abel, “The role of NR4A transcription factors in memory formation”, Brain Res. Bull., 85 (2011), 21–29 | DOI

[77] B. Beck, G. Pourié, “Ghrelin, neuropeptide Y, and other feeding-regulatory peptides active in the Hippocampus: Role in learning and memory”, Nutr. Rev., 71 (2013), 541–561 | DOI

[78] I. H. Deakin, B. R. Godlewska, M. A. Walker, G. J. Huang, M. H. Schwab, K. A. Nave, A. J. Law, P. J. Harrison, “Altered hippocampal gene expression and structure in transgenic mice overexpressing neuregulin 1 (Nrg1) type I”, Transl. Psychiatry, 8 (2018), 229 | DOI

[79] P. B. Chen, R. Kawaguchi, C. Blum, J. M. Achiro, G. Coppola, T. J. O'Dell, K. C. Martin, “Mapping gene expression in excitatory neurons during hippocampal late-phase long-term potentiation”, Front. Mol. Neurosci., 10 (2017), 39

[80] M. S. Cembrowski, L. Wang, K. Sugino, B. C. Shields, N. Spruston, “Hipposeq: A comprehensive RNA-seq database of gene expression in hippocampal principal neurons”, eLife, 5 (2016), e14997 | DOI

[81] A. E. Umryukhin, “Neiromediatornye gippokampalnye mekhanizmy stressornogo povedeniya i reaktsii izbeganiya”, Vestnik novykh meditsinskikh tekhnologii, 2013, no. 1

[82] L. Guo, M. Niu, J. Yang, L. Li, S. Liu, Y. Sun, Z. Zhou, Y. Zhou, “GHS-R1a Deficiency Alleviates Depression-Related Behaviors After Chronic Social Defeat Stress”, Front. Neurosci., 13 (2019)

[83] E. M. Inyushkina, “Leptin anoreksigennyi regulyatornyi polipeptid s respiratornoi aktivnostyu”, Vestnik Samarskogo gosudarstvennogo universiteta. Estestvennonauchnaya seriya, 2 (2006), 168–177

[84] G. E. Mazo, G. V. Rukavishnikov, A. O. Kibitov, L. L. Kelin, A. V. Bobrovskii, “Narusheniya pischevogo povedeniya u patsientov s depressivnym rasstroistvom: patofiziologicheskie mekhanizmy komorbidnosti”, Uspekhi fiziologicheskikh nauk, 50 (2019), 31–41

[85] Y. M. Morozov, M. Koch, P. Rakic, T. L. Horvath, “Cannabinoid type 1 receptor-containing axons innervate NPY/AgRP neurons in the mouse arcuate nucleus”, Mol. Metab., 6 (2017), 374–381 | DOI

[86] R. A. Costa, I. R. Ferreira, H. A. Cintra, L. H. F. Gomes, L. da C. Guida, “Genotype-Phenotype Relationships and Endocrine Findings in Prader-Willi Syndrome”, Front. Endocrinol. (Lausanne), 10 (2019)

[87] Y. Shen, M. Tian, Y. Zheng, F. Gong, A. K. Y. Fu, N. Y. Ip, “Stimulation of the Hippocampal POMC/MC4R Circuit Alleviates Synaptic Plasticity Impairment in an Alzheimer's Disease Model”, Cell Rep., 17 (2016), 1819–1831 | DOI

[88] I. V. Gmoshinskii, S. A. Apryatin, V. A. Shipelin, D. B. Nikityuk, “Neiromediatory i neiropeptidy biomarkery metabolicheskikh narushenii pri ozhirenii”, Problemy endokrinologii, 64 (2018), 258–269

[89] G. P. Mavani, M. V. DeVita, M. F. Michelis, “A review of the nonpressor and nonantidiuretic actions of the hormone vasopressin”, Front. Med., 2 (2015), 19

[90] E. A. Bordt, C. J. Smith, T. G. Demarest, S. D. Bilbo, M. A. Kingsbury, “Mitochondria, Oxytocin, and Vasopressin: Unfolding the Inflammatory Protein Response”, Neurotox. Res., 36 (2019), 239–256 | DOI