Coding structure for the ORF1ab, S, M and N coronavirus genes
Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020) no. 2, pp. 441-454.

Voir la notice de l'article provenant de la source Math-Net.Ru

Spectral-statistical approach was applied to comparative analysis of coronavirus genomes from the four genus Alphacoronavirus, Betacoronavirus (including new SARS-CoV-2 virus), Gammacoronavirus and Deltacoronavirus. This analysis was done from the point of view of 3-regularity and latent triplet profile periodicity existence in the coding sequences of four structural genes: ORF1ab encoding transcriptase; S-gene of glycoprotein forming spikes; M-gene of membrane protein; N-gene of nucleoprotein. A whole number of the genomes analyzed was equal to 3410. Gene numbers in each of the four groups in the study respectively were the same. In the result, practically, in the CDSs of all analyzed genes of ORF1ab, S and N the latent profile triplet periodicity was revealed and high value of 3-regularity index, being a quality estimate of coding triplet structure conservation, was determined. On the contrary, for coding structure of M-genes a tendency was revealed to diffuse up to homogeneity for 60 % of the genes in the genomes of alphacoronaviruses analyzed and for 67 % of the genes of the gammacoronaviruses. Tendency of the such structure diffusion, being accompanied by decrease of 3-regularity index average value in comparison with other genes, while the triplet profile periodicity remains saved, was also noted for M-genes of SARS-CoV-2 viruses. Probably, this tendency reflects a significance of M-genes variability in coronavirus adaptation to the novel hosts of genus. Analysis of 3-profile periodicity matrices of the four groups of SARS-CoV-2 genes considered in the work, for the viruses isolated in Europe, Asia and USA, did not revealed their significant difference, that is allowing to propose a single source of this virus propagation.
@article{MBB_2020_15_2_a4,
     author = {M. B. Chaley and Zh. S. Tyulko and V. A. Kutyrkin},
     title = {Coding structure for the {ORF1ab,} {S,} {M} and {N} coronavirus genes},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {441--454},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a4/}
}
TY  - JOUR
AU  - M. B. Chaley
AU  - Zh. S. Tyulko
AU  - V. A. Kutyrkin
TI  - Coding structure for the ORF1ab, S, M and N coronavirus genes
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2020
SP  - 441
EP  - 454
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a4/
LA  - ru
ID  - MBB_2020_15_2_a4
ER  - 
%0 Journal Article
%A M. B. Chaley
%A Zh. S. Tyulko
%A V. A. Kutyrkin
%T Coding structure for the ORF1ab, S, M and N coronavirus genes
%J Matematičeskaâ biologiâ i bioinformatika
%D 2020
%P 441-454
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a4/
%G ru
%F MBB_2020_15_2_a4
M. B. Chaley; Zh. S. Tyulko; V. A. Kutyrkin. Coding structure for the ORF1ab, S, M and N coronavirus genes. Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020) no. 2, pp. 441-454. http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a4/

[1] Y. R. Guo, Q. D. Cao, Z. S. Hong, Y. Y. Tan, S. D. Chen, H. J. Jin, K. S. Tan, D. Y. Wang, Y. Yan, “The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak an update on the status”, Military Medical Research, 7 (2020), 11 | DOI | Zbl

[2] Lvov D.K. (red.), Rukovodstvo po virusologii: Virusy i virusnye infektsii cheloveka i zhivotnykh, OOO Izdatelstvo «Meditsinskoe informatsionnoe agentstvo», M., 2013

[3] M. M.C. Lai, P. R. Brayton, R. C. Armen, C. D. Patton, C. Pugh, S. A. Stohlman, “Mouse hepatitis virus A59: mRNA structure and genetic localization of the sequence divergence from hepatotropic strain MHV-3”, Journal of virology, 39:3 (1981), 823–834 | DOI

[4] M. M.C. Lai, R. S. Baric, S. Makino, J. G. Keck, J. Egbert, J. Leibowitz, S. A. Stohlman, “Recombination between non segmented RNA genomes of murine coronaviruses”, Journal of virology, 56:2 (1985), 449–456 | DOI

[5] W. B. Yu, G. D. Tang, L. Zhang, R. T. Corlett, “Decoding the evolution and transmissions of the novel pneumonia coronavirus (SARS-CoV-2 / HCoV-19) using whole genomic data”, Zoological Research, 41:3 (2020), 247–257 | DOI

[6] Z. Zhao, H. Li, X. Wu, Y. Zhong, K. Zhang, Y. P. Zhang, E. Boerwinkle, Y. X. Fu, “Moderate mutation rate in the SARS coronavirus genome and its implications”, BMC Evolutionary Biology, 4 (2004), 21 | DOI

[7] L. Liu, Q. Fang, F. Deng, H. Wang, C. E. Yi, L. Ba, W. Yu, R. D. Lin, T. Li, Z. Hu et al, “Natural mutations in the receptor binding domain of spike glycoprotein determine the reactivity of cross-neutralization between palm civet coronavirus and severe acute respiratory syndrome coronavirus”, Journal of Virology, 81:9 (2007), 4694–4700 | DOI

[8] M. Cotton, S. J. Watson, P. Kellam, A. Al-Rabeeah, F. R.C. S. H. Q. Makhdoom, A. Assiri, J. Al-Tawfiq, R. Alhakeem, H. Madani, F. AlRabiah et al, “Transmission and evolution of the Middle East respiratory syndrome coronavirus in Saudi Arabia: a descriptive genomic study”, Lancet, 382 (2013), 1993–2002 | DOI

[9] N. Wang, S. Y. Li, X. L. Yang, H. M. Huang, Y. J. Zhang, H. Guo, C. M. Luo, M. Miller, G. Zhu, A. A. Chmura et al, “Serological evidence of bat SARS-related coronavirus infection in humans”, Virologica Sinica, 33:1 (2018), 104–107 | DOI

[10] M. Yu. Schelkanov, A. Yu. Popova, V. G. Dedkov, V. G. Akimkin, V. V. Maleev, “Istoriya izucheniya i sovremennaya klassifikatsiya koronavirusov (Nidovirales: Coronaviridae)”, Infektsiya i immunitet, 10:2 (2020), 221–246 | DOI

[11] B. G. Hogue, C. E. Machamer, “Coronavirus structural proteins and virus assembly”, Nidoviruses, ed. Perlman S., ASM Press, 2007, 179–200

[12] D. Kim, J. Y. Lee, J. S. Yang, J. W. Kim, V. N. Kim, H. Chang, “The architecture of SARS-CoV-2 transcriptome”, Cell, 181:4 (2020), 914–921.e10 | DOI

[13] Schoeman, D., Fielding, B. C., “Coronavirus envelope protein: current knowledge”, Virology Journal, 16 (2019), 69 | DOI

[14] M. Chaley, V. Kutyrkin, “Profile-Statistical Periodicity of DNA Coding Regions”, DNA Research, 18 (2011), 353–362 | DOI

[15] V. A. Kutyrkin, M. B. Chalei, “Model organizatsii kodirovaniya v prokarioticheskikh organizmakh”, Matematicheskaya biologiya i bioinformatika, 11:1 (2016), 24–45 | DOI

[16] M. B. Chalei, Zh. S. Tyulko, V. A. Kutyrkin, “Raspoznavanie vidov flavivirusov na osnove kodiruyuschikh posledovatelnostei poliproteinov”, Matematicheskaya biologiya i bioinformatika, 14:2 (2019), 533–542 | DOI

[17] NCBI SARS-CoV-2 Resources, (accessed 30.10.2020) https://www.ncbi.nlm.nih.gov/sars-cov-2/

[18] GenBank, (accessed 30.04.2020) https://ftp.ncbi.nlm.nih.gov/genbank/

[19] M. Chaley, V. Kutyrkin, “Stochastic Models for Description of Structural-Statistical Properties in DNA Sequences”, Journal of Theoretical Biology, 496 (2020), 110126 | DOI | MR

[20] F. Wu, S. Zhao, B. Yu, Y. M. Chen, W. Wang, Z. G. Song, Y. Hu, Z. W. Tao, J. H. Tian, Y. Y. Pei, M. L. Yuan et al, “A new coronavirus associated with human respiratory disease in China”, Nature, 579:7798 (2020), 265–269 | DOI

[21] K. Stadler, V. Masignani, M. Eickmann, S. Becker, S. Abrignani, H. D. Klenk, R. Rappuoli, “SARS — beginning to understand a new virus”, Nature Reviews. Microbiology, 1:3 (2003), 209–218 | DOI

[22] B. W. Neuman, G. Kiss, A. H. Kunding, D. Bhella, M. F. Baksh, S. Connelly, B. Droese, J. P. Klaus, S. Makino, S. G. Sawicki, S. G. Siddell et al, “A structural analysis of M protein in coronavirus assembly and morphology”, Journal of Structural Biology, 174:1, 11–22 | DOI | MR

[23] J. Y. Li, C. H. Liao, Q. Wang, Y. J. Tan, R. Luo, Y. Qiu, X. Y. Ge, “The ORF6, ORF8 and nucleocapsid proteins of SARS-CoV-2 inhibit type I interferon signaling pathway”, Virus Research, 286 (2020), 198074 | DOI