Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2020_15_2_a3, author = {G. S. Dotsenko and A. S. Dotsenko}, title = {Conserved peptides recognition by ensemble of neural networks for mining protein data -- {LPMO} case study}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {429--440}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a3/} }
TY - JOUR AU - G. S. Dotsenko AU - A. S. Dotsenko TI - Conserved peptides recognition by ensemble of neural networks for mining protein data -- LPMO case study JO - Matematičeskaâ biologiâ i bioinformatika PY - 2020 SP - 429 EP - 440 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a3/ LA - en ID - MBB_2020_15_2_a3 ER -
%0 Journal Article %A G. S. Dotsenko %A A. S. Dotsenko %T Conserved peptides recognition by ensemble of neural networks for mining protein data -- LPMO case study %J Matematičeskaâ biologiâ i bioinformatika %D 2020 %P 429-440 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a3/ %G en %F MBB_2020_15_2_a3
G. S. Dotsenko; A. S. Dotsenko. Conserved peptides recognition by ensemble of neural networks for mining protein data -- LPMO case study. Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020) no. 2, pp. 429-440. http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a3/
[1] J. Ijaq, M. Chandrasekharan, R. Poddar, N. Bethi, V. S. Sundararajan, “Annotation and curation of uncharacterized proteins — challenges”, Frontiers in Genetics, 6 (2015), 119 | DOI
[2] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, D. J. Lipman, “Basic local alignment search tool”, Journal of Molecular Biology, 215 (1990), 403–410 | DOI
[3] A. Pertsemlidis, J. W. Fondon III, “Having a BLAST with bioinformatics (and avoiding BLASTphemy)”, Genome Biology, 2 (2001), reviews2002 | DOI
[4] W. Tian, J. Skolnick, How well is enzyme function conserved as a function of pairwise sequence identity?, Journal of Molecular Biology, 333 (2003), 863–882 | DOI
[5] B.-J. Yoon, “Hidden Markov models and their applications in biological sequence analysis”, Current Genomics, 10 (2009), 402–415 | DOI
[6] K. H. Choo, J. C. Tong, L. Zhang, “Recent applications of hidden Markov models in computational biology”, Genomics, proteomics and bioinformatics, 2 (2004), 84–96 | DOI
[7] HMMER: Biosequence Analysis Using Profile Hidden Markov Models, (accessed 01.09.2020) http://hmmer.org/
[8] S. El-Gebali, J. Mistry, A. Bateman, S. R. Eddy, A. Luciani, S. C. Potter, M. Qureshi, L. J. Richardson, G. A. Salazar, A. Smart, E. L.L. Sonnhammer, L. Hirsh, L. Paladin, D. Piovesan, S. C.E. Tosatto, R. D. Finn, “The Pfam protein families database in 2019”, Nucleic Acids Research, 47 (2019), D427–D432 (Database Issue) | DOI | MR
[9] C. J.A. Sigrist, E. de Castro, L. Cerutti, B. A. Cuche, N. Hulo, A. Bridge, L. Bougueleret, I. Xenarios, “New and continuing developments at PROSITE”, Nucleic Acids Research, 41 (2013), D344–D347 (Database Issue) | DOI
[10] P. K. Busk, L. Lange, “Function-based classiffication of carbohydrate-active enzymes by recognition of short, conserved peptide motifs”, Applied and Environmental Microbiology, 79 (2013), 3380–3391 | DOI
[11] P. K. Busk, M. Lange, B. Pilgaard, L. Lange, “Several genes encoding enzymes with the same activity are necessary for aerobic fungal degradation of cellulose in nature”, PLoS ONE, 9 (2014), e114138 | DOI
[12] P. K. Busk, B. Pilgaard, M. J. Lezyk, A. S. Meyer, L. Lange, “Homology to peptide pattern for annotation of carbohydrate-active enzymes and prediction of function”, BMC Bioinformatics, 18 (2017), 214 | DOI
[13] S. Lu, J. Wang, F. Chitsaz, M. K. Derbyshire, R. C. Geer, N. R. Gonzales, M. Gwadz, D. I. Hurwitz, G. H. Marchler, J. S. Song, N. Thanki, R. A. Yamashita, M. Yang, D. Zhang, C. Zheng, C. J. Lanczycki, A. Marchler-Bauer, “CDD/SPARCLE: the conserved domain database in 2020”, Nucleic Acids Research, 48 (2020), D265–D268 (Database Issue) | DOI
[14] J. W. Agger, P. K. Busk, B. Pilgaard, A. S. Meyer, L. Lange, “A new functional classification of glucuronoyl esterases by peptide pattern recognition”, Frontiers in Microbiology, 8 (2017), 309 | DOI
[15] P. K. Busk, L. Lange, “Classification of fungal and bacterial lytic polysaccharide monooxygenases”, BMC Genomics, 16 (2015), 368 | DOI
[16] G. R. Hemsworth, E. M. Johnston, G. J. Davies, P. H. Walton, “Lytic polysaccharide monooxygenases in biomass conversion”, Trends in Biotechnology, 33 (2015), 747–761 | DOI
[17] K. S. Johansen, “Lytic polysaccharide monooxygenases: the microbial power tool for lignocellulose degradation”, Trends in Plant Science, 21 (2016), 926–936 | DOI
[18] CAZy, carbohydrate-active enzymes database, (accessed 01.09.2020) http://www.cazy.org/
[19] NCBI protein database, (accessed 01.09.2020) https://www.ncbi.nlm.nih.gov/protein/
[20] UniProt Database, (accessed 01.09.2020) https://www.uniprot.org/
[21] F. Sievers, A. Wilm, D. G. Dineen, T. J. Gibson, K. Karplus, W. Li, R. Lopez, H. McWilliam, M. Remmert, J. S-ding, J. D. Thompson, D. G. Higgins, “Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega”, Molecular Systems Biology, 7 (2011), 539 | DOI