Determination of the structure of biological macromolecular particles using X-ray lasers. Achievements and prospects
Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020) no. 2, pp. 195-234.

Voir la notice de l'article provenant de la source Math-Net.Ru

X-ray diffraction analysis is the main experimental approach to determining the atomic structure of biological macromolecules and their complexes. The most serious limitation of its applicability, to date, is the need to prepare a sample of the object under study in the form of a single crystal, which is caused by the extremely low intensity of rays scattered by a single molecule. The commissioning of X-ray Free-Electron Lasers with their super-powerful (by many orders of magnitude exceeding the brightness of modern synchrotrons) and ultra-short (less than 100 fs) pulse is an experimental breakthrough that allows us to expect to obtain diffraction patterns from individual biological particles and then determine their structure. The first experimental results demonstrate the fundamental possibility of such an approach and are accompanied by the publication of a significant number of articles on various aspects of the development of the method. The purpose of this article is to discuss the current state of art in this area, evaluate the results achieved and discuss the prospects for further development of the method based on the analysis of publications in the world scientific literature of recent years and the experience of work carried out by the review authors and their colleagues.
@article{MBB_2020_15_2_a19,
     author = {T. E. Petrova and V. Yu. Lunin},
     title = {Determination of the structure of biological macromolecular particles using {X-ray} lasers. {Achievements} and prospects},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {195--234},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a19/}
}
TY  - JOUR
AU  - T. E. Petrova
AU  - V. Yu. Lunin
TI  - Determination of the structure of biological macromolecular particles using X-ray lasers. Achievements and prospects
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2020
SP  - 195
EP  - 234
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a19/
LA  - ru
ID  - MBB_2020_15_2_a19
ER  - 
%0 Journal Article
%A T. E. Petrova
%A V. Yu. Lunin
%T Determination of the structure of biological macromolecular particles using X-ray lasers. Achievements and prospects
%J Matematičeskaâ biologiâ i bioinformatika
%D 2020
%P 195-234
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a19/
%G ru
%F MBB_2020_15_2_a19
T. E. Petrova; V. Yu. Lunin. Determination of the structure of biological macromolecular particles using X-ray lasers. Achievements and prospects. Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020) no. 2, pp. 195-234. http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a19/

[1] V. Yu. Lunin, N. L. Lunina, T. E. Petrova, “Issledovanie odinochnykh chastits difraktsionnymi metodami. Kristallograficheskii podkhod”, Matematicheskaya biologiya i bioinformatika, 14, Suppl. (2019), t44–t60 | DOI

[2] L. D. Landau, E. M. Lifshits, Mekhanika, Nauka, M., 1973, 208 pp. | MR

[3] L. D. Landau, E. M. Lifshits, Teoriya polya, Nauka, M., 1973, 504 pp. | MR

[4] A. G. Urzhumtsev, V. Y. Lunin, “Introduction to crystallographic refinement of macromolecular atomic models”, Crystallography Reviews, 25 (2019), 164–262 | DOI

[5] T. Blandel, L. Dzhonson, Kristallografiya belka, MIR, M., 1979, 620 pp.

[6] I. Serdyuk, N. Zakai, Dzh. Zakai, Metody v molekulyarnoi biofizike. Struktura. Funktsiya. Dinamika, v. 2, KDU, M., 2010, 733 pp.

[7] B. Rupp, Biomolecular Crystallography: Principles, Practice, and Applications to Structural Biology, Garland Science, Taylor and Francis Group, New York, 2010, xxi+809 pp.

[8] L. Urzhumtseva, B. Klaholz, A. Urzhumtsev, “On effective and optical resolutions of diffraction data sets”, Acta Crystallographica D, 69 (2013), 1921–1934 | DOI

[9] M. Van Heel, M. Schatz, “Fourier shell correlation threshold criteria”, J. Struct. Biol., 151 (2005), 250–262 | DOI

[10] M. Van Heel, M. Schatz, Reassessing the Revolution's Resolutions, bioRxiv, No 224402, 2017 | DOI

[11] E. Sobolev, S. Zolotarev, K. Giewekemeyer, J. Bielecki, K. Okamoto, H. K. N. Reddy, J. Andreasson, K. Ayyer, I. Barak, S. Bari et al., “Megahertz single-particle imaging at the European XFEL”, Communications Physics, 3 (2020), 97 | DOI

[12] I. Georgescu, “The first decade of XFELs”, Nature Reviews Physics, 2 (2020), 345 | DOI

[13] G. Margaritondo, P. R. Ribič, “A simplified description of X-ray free-electron lasers”, J. Synchrotron Radiation, 18 (2011), 101–108 | DOI

[14] C. Pellegrini, “The history of X-ray free-electron lasers”, Eur. Phys. J. H, 37 (2012), 659–708 | DOI

[15] T. A. White, V. Mariani, W. Brehm, O. Yefanov, A. Barty, K. R. Beyerlein, F. Chervinskii, L. Galli, C. Gati, T. Nakane et al, “Recent developments in CrystFEL”, J. Appl. Cryst., 49 (2016), 680–689 | DOI

[16] H. N. Chapman, P. Fromme, A. Barty, T. A. White, R. A. Kirian, A. Aquila, M. S. Hunter, J. Schulz, D. P. DePonte, U. Weierstall et al, “Femtosecond X-ray protein nanocrystallography”, Nature, 470 (2011), 73–77 | DOI

[17] S. Boutet, L. Lomb, G. J. Williams, T. R. Barends, A. Aquila, R. B. Doak, U. Weierstall, D. P. DePonte, J. Steinbrener, R. L. Shoeman et al, “High-resolution protein structure determination by serial femtosecond crystallography”, Science, 337 (2012), 362–364 | DOI

[18] J. Kern, R. Alonso-Mori, J. Hellmich, R. Tran, J. Hattne, H. Laksmono, C. Glöckner, N. Echols, R. G. Sierra, J. Sellberg et al, “Room temperature femtosecond X-ray diffraction of photosystem II microcrystals”, Proc Natl Acad Sci USA, 109 (2012), 9721–9726 | DOI

[19] C. Kupitz, S. Basu, I. Grotjohann, R. Fromme, N. A. Zatsepin, K. N. Rendek, M. S. Hunter, R. L. Shoeman, T. A. White, D. Wang et al, “Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser”, Nature, 513 (2014), 261–265 | DOI

[20] R. G. Sierra, C. Gati, H. Laksmono, E. H. Dao, S. Gul, F. Fuller, J. Kern, R. Chatterjee, M. Ibrahim, A. S. Brewster et al, “Concentric-flow electrokinetic injector enables serial crystallography of ribosome and photosystem II”, Nat. Methods, 13 (2016), 59–62 | DOI

[21] W. Liu, D. Wacker, C. Gati, G. W. Han, D. James, D. Wang, G. Nelson, U. Weierstall, V. Katritch, A. Barty et al, “Serial femtosecond crystallography of G protein-coupled receptors”, Science, 342 (2013), 1521–1524 | DOI

[22] Y. Kang, X. E. Zhou, X. Gao, Y. He, W. Liu, A. Ishchenko, A. Barty, T. A. White, O. Yefanov, G. W. Han et al, “Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser”, Nature, 523 (2015), 561–567 | DOI

[23] L. C. Johansson, D. Arnlund, T. A. White, G. Katona, D. P. DePonte, U. Weierstall, R. B. Doak, R. L. Shoeman, L. Lomb, E. Malmerberg et al, “Lipidic phase membrane protein serial femtosecond crystallography”, Nat. Methods, 9 (2012), 263–265 | DOI

[24] L. C. Johansson, D. Arnlund, G. Katona, T. A. White, A. Barty, D. P. DePonte, R. L. Shoeman, C. Cecilia Wickstrand, A. Sharma, G. J. Williams et al, “Structure of a photosynthetic reaction centre determined by serial femtosecond crystallography”, Nat. Commun., 4 (2013), 2911 | DOI

[25] U. Weierstall, D. James, C. Wang, T. A. White, D. Wang, W. Liu, J. C.H. Spence, R. B. Doak, G. Nelson, P. Fromme et al, “Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography”, Nat. Commun., 5 (2014), 3309 | DOI

[26] C. Gati, D. Oberthuer, O. Yefanov, R. D. Bunker, F. Stellato, E. Chiu, S. M. Yeh, A. Aquila, S. Basu, R. Bean et al, “Atomic structure of granulin determined from native nanocrystalline granulovirus using an X-ray free-electron laser”, Proc. Natl. Acad. Sci. USA, 114 (2017), 2247–2252 | DOI

[27] M. L. Grünbein, J. Bielecki, A. Gorel, M. Stricker, R. Bean, M. Cammarata, K. Dörner, L. Fröhlich, E. Hartmann, S. Hauf et al, “Megahertz data collection from protein microcrystals at an X-ray free-electron laser”, Nat. Commun., 9 (2018), 3487 | DOI

[28] M. O. Wiedorn, D. Oberthür, R. Bean, R. Schubert, N. Werner, B. Abbey, M. Aepfelbacher, L. Adriano, A. Allahgholi, N. Al-Qudami et al, “Megahertz serial crystallography”, Nat. Commun., 9 (2018), 4025 | DOI

[29] C. Gisriel, J. Coe, R. Letrun, O. M. Yefanov, C. Luna-Chavez, N. E. Stander, S. Lisova, V. Mariani, M. Kuhn, S. Aplin et al, “Membrane protein megahertz crystallography at the European XFEL”, Nat. Commun., 10 (2019), 5021 | DOI

[30] J. M. Glownia, J. Cryan, J. Andreasson, A. Belkacem, N. Berrah, C. Blaga, C. Bostedt, J. Bozek, L. DiMauro, L. Fang et al, “Time-resolved pump-probe experiments at the LCLS”, Opt. Express, 18 (2010), 17620–17630 | DOI

[31] A. Aquila, M. S. Hunter, R. B. Doak, R. A. Kirian, P. Fromme, T. A. White, J. Andreasson, D. Arnlund, S. Bajt, T. R. M. Barends et al, “Time-resolved protein nanocrystallography using an X-ray free-electron laser”, Opt. Express, 20 (2012), 2706–2716 | DOI

[32] J. Tenboer, S. Basu, N. Nadia Zatsepin, K. Pande, D. Milathianaki, M. Frank, M. Hunter, S. Boutet, G. J. Williams, J. E. Koglin et al, “Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein”, Science, 346 (2014), 1242–1246 | DOI

[33] T. R. Barends, L. Foucar, A. Ardevol, K. Nass, A. Aquila, S. Botha, R. B. Doak, K. Falahati, E. Hartmann, M. Hilpert et al, “Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation”, Science, 350 (2015), 445–450 | DOI

[34] K. Pande, C. D. M. Hutchison, G. Groenhof, A. Aquila, J. S. Robinson, J. Tenboer, S. Basu, S. Boutet, D. P. DePonte, M. Liang et al, “Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein”, Science, 352 (2016), 725–729 | DOI

[35] M. Kubo, E. Nango, K. Tono, T. Kimura, S. Owada, C. Song, F. Mafuné, K. Miyajima, Y. Takeda, J. Y. Kohno et al, “Nanosecond pump-probe device for time-resolved serial femtosecond crystallography developed at SACLA”, J. Synchrotron Radiat., 24 (2017), 1086–1091 | DOI

[36] S. Pandey, R. Bean, T. Sato, I. Poudyal, J. Bielecki, J. C. Villarreal, O. Yefanov, V. Mariani, T. A. White, C. Kupitz et al, “Time-resolved serial femtosecond crystallography at the European XFEL”, Nat. Methods, 17 (2020), 73–78 | DOI

[37] V. Yu. Lunin, N. L. Lunina, T. E. Petrova, “Biologicheskaya kristallografiya bez kristallov”, Matematicheskaya biologiya i bioinformatika, 12 (2017), 55–72 | DOI

[38] R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, J. Hajdu, “Potential for biomolecular imaging with femtosecond X-ray pulses”, Nature, 406 (2000), 752–757 | DOI

[39] J. P. Cryan, J. M. Glownia, J. Andreasson, A. Belkacem, N. Berrah, C. I. Blaga, C. Bostedt, J. Bozek, C. Buth, L. F. DiMauro et al, “Auger electron angular distribution of double corehole states in the molecular reference frame”, Phys. Rev. Lett., 105 (2010), 083004 | DOI

[40] H. N. Chapman, O. M. Yefanov, K. Ayyer, T. A. White, A. Barty, A. Morgan, V. Mariani, D. Oberthuer, K. Pande, “Continuous diffraction of molecules and disordered molecular crystals”, J. Appl. Crystallogr., 50 (2017), 1084–1103 | DOI

[41] S. P. Hau-Riege, R. A. London, A. Szoke, “Dynamics of biological molecules irradiated by short x-ray pulses”, Phys. Rev. E. Stat. Nonlin. Soft Matter Phys., 69 (2004), 051906 | DOI

[42] U. Lorenz, N. M. Kabachnik, E. Weckert, I. A. Vartanyants, “Impact of ultrafast electronic damage in single particle x-ray imaging experiments”, Phys. Rev. E. Stat. Nonlin. Soft Matter Phys., 86 (2012), 051911 | DOI

[43] B. Ziaja, Z. Jurek, N. Medvedev, V. Saxena, S.-K. Son, R. Santra, “Towards Realistic Simulations of Macromolecules Irradiated under the Conditions of Coherent Diffraction Imaging with an X-ray Free-Electron Laser”, Photonics, 2 (2015), 256–269 | DOI

[44] T. Kai, K. Moribayashi, “Effects of electron-impact ionization on the damage to biomolecules irradiated by XFEL”, Journal of Physics: Conference Series, 163 (2009), 012035 | DOI

[45] B. Ziaja, R. B. de Castro Antonio, E. Weckert, T. Moeller, “Modelling dynamics of samples exposed to free-electron-laser radiation with Boltzmann equations”, Eur. Phys. J., 40 (2006), 465–480 | DOI

[46] C. Fortmann-Grote, A. Buzmakov, Z. Jurek, N. D. Loh, L. Samoylova, R. Santra, E. A. Schneidmiller, T. Tschentscher, S. Yakubov, C. H. Yoon et al, “Start-to-end simulation of single-particle imaging using ultra-short pulses at the European X-ray FreeElectron Laser”, IUCrJ., 4 (2017), 560–568 | DOI

[47] C. Caleman, M. Bergh, H. A. Scott, J. C. Spence, H. N. Chapman, N. Tîmneanu, “Simulations of radiation damage in biomolecular nanocrystals induced by femtosecond X-ray pulses”, J. Mod. Opt., 58 (2011), 1486–1497 | DOI

[48] S. P. Hau-Riege, “Nonequilibrium electron dynamics in materials driven by high-intensity x-ray pulses”, Phys. Rev. E, 87 (2013), 053102 | DOI

[49] B. Akça, S. Erzeneoğlu, “The Mass Attenuation Coefficients, Electronic, Atomic, and Molecular Cross-Sections, Effective Atomic Numbers, and Electron Densities for Compounds of Some Biomedically Important Elements at 59.5 keV”, Science and Technology of Nuclear Installations, 2014, 901465 | DOI

[50] O. B. Zeldin, M. Gerstel, E. F. Garman, “RADDOSE-3D: time- and space-resolved modelling of dose in macromolecular crystallography”, J. Appl. Cryst., 46 (2013), 1225–1230 | DOI

[51] C. S. Bury, C. Brooks-Bartlett, S. P. Walsh, E. F. Garman, “Estimate your dose: RADDOSE-3D”, Protein Sci., 27 (2018), 217–228 | DOI

[52] J. L. Dickerson, P. T. N. McCubbin, E. F. Garman, “RADDOSE-XFEL: femtosecond timeresolved dose estimates for macromolecular X-ray free-electron laser experiments”, J. Appl. Cryst., 53 (2020), 549–560 | DOI

[53] R. L. Owen, E. Rudino-Pinera, E. F. Garman, “Experimental determination of the radiation dose limit for cryocooled protein crystals”, Proc. Natl. Acad. Sci. USA, 103 (2006), 4912–4917 | DOI

[54] E. de la Mora, N. Coquelle, C. S. Bury, M. Rosenthal, J. M. Holton, I. Carmichael, E. F. Garman, M. Burghammer, J. P. Colletier, M. Weik, “Radiation damage and dose limits in serial synchrotron crystallography at cryo- and room temperatures”, Proc. Natl. Acad. Sci. USA, 117 (2020), 4142–4151 | DOI

[55] B. Huang, M. Bates, X. Zhuang, “Super-resolution fluorescence microscopy”, Annu. Rev. Biochem., 78 (2009), 993–1016 | DOI

[56] J. A. Rodriguez, R. Xu, C. C. Chen, Z. Huang, H. Jiang, A. L. Chen, K. S. Raines, A. Pryor Jr, D. Nam, L. Wiegart et al, “Three-dimensional coherent X-ray diffractive imaging of whole frozen-hydrated cells”, IUCrJ, 2 (2015), 575–583 | DOI

[57] M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao et al, “An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy”, J. Electron Spectrosc. Relat. Phenom., 170 (2009), 4–12 | DOI

[58] T. Kimura, Y. Joti, A. Shibuya, C. Song, S. Kim, K. Tono, M. Yabashi, M. Tamakoshi, T. Moriya, T. Oshima et al, “Imaging live cell in micro-liquid enclosure by X-ray laser diffraction”, Nat. Commun., 5 (2014), 3052 | DOI

[59] D. Borek, M. Cymborowski, M. Machius, W. Minor, Z. Otwinowski, “Diffraction data analysis in the presence of radiation damage”, Acta Crystallogr D, 66 (2010), 426–436 | DOI

[60] M. A. Warkentin, H. Atakisi, J. B. Hopkins, D. Walko, R. E. Thorn, “Lifetimes and spatiotemporal response of protein crystals in intense X-ray microbeams”, IUCrJ, 4 (2017), 785–794 | DOI

[61] L. Lomb, T. R.M. Barends, S. Kassemeyer, A. Aquila, S. W. Epp, B. Erk, L. Foucar, R. Hartmann, B. Rudek, D. Rolles et al, “Radiation damage in protein serial femtosecond crystallography using an x-ray free-electron laser”, Phys. Rev. B. Condens. Matter Mater. Phys., 84 (2011), 214111 | DOI

[62] L. Young, E. P. Kanter, B. Krässig, Y. Li, A. M. March, S. T. Pratt, R. Santra, S. H. Southworth, N. Rohringer, L. F. Dimauro et al, “Femtosecond electronic response of atoms to ultra-intense X-rays”, Nature, 466 (2010), 56–61 | DOI

[63] B. Erk, D. Rolles, L. Foucar, B. Rudek, S. W. Epp, M. Cryle, C. Bostedt, S. Schorb, J. Bozek, A. Rouzee et al, “Ultrafast charge rearrangement and nuclear dynamics upon inner-shell multiple ionization of small polyatomic molecules”, Phys. Rev. Lett, 110 (2013), 053003 | DOI

[64] H. Fukuzawa, S. K. Son, K. Motomura, S. Mondal, K. Nagaya, S. Wada, X. J. Liu, R. Feifel, T. Tachibana, Y. Ito et al, “Deep inner-shell multiphoton ionization by intense X-ray free-electron laser pulses”, Phys. Rev. Lett., 110 (2013), 173005 | DOI

[65] A. Rudenko, L. Inhester, K. Hanasaki, X. Li, S. J. Robatjazi, B. Erk, R. Boll, K. Toyota, Y. Hao, O. Vendrell et al, “Femtosecond response of polyatomic molecules to ultra-intense hard X-rays”, Nature, 546 (2017), 129–132 | DOI

[66] T. Takanashi, K. Nakamura, E. Kukk, K. Motomura, H. Fukuzawa, K. Nagaya, S. I. Wada, Y. Kumagai, D. Iablonskyi, Y. Ito et al, “Ultrafast Coulomb explosion of a diiodomethane molecule induced by an X-ray free-electron laser pulse”, Phys. Chem. Chem. Phys., 19 (2017), 19707–19721 | DOI

[67] K. Motomura, H. Fukuzawa, S. K. Son, S. Mondal, T. Tachibana, Y. Ito, M. Kimura, K. Nagaya, T. Sakai, K. Matsunami, “Sequential multiphoton multiple ionization of atomic argon and xenon irradiated by x-ray free-electron laser pulses from SACLA”, J. Phys. B, 46 (2013), 164024 | DOI

[68] H. Fukuzawa, T. Takanashi, E. Kukk, K. Motomura, S. I. Wada, K. Nagaya, Y. Ito, T. Nishiyama, C. Nicolas, Y. Kumagai et al, “Real-time observation of X-ray-induced intramolecular and interatomic electronic decay in CH2I2”, Nat. Commun., 10 (2019), 2186 | DOI

[69] M. Wallner, J. H. D. Eland, R. J. Squibb, J. Andersson, A. H. Roos, R. Singh, O. Talaee, D. Koulentianos, M. N. Piancastelli, M. Simon et al, “Coulomb explosion of CD3I induced by single photon deep inner-shell ionization”, Sci. Rep., 1 (2020), 1246 | DOI

[70] B. F. Murphy, T. Osipov, Z. Jurek, L. Fang, S. K. Son, M. Mucke, J. H. Eland, V. Zhaunerchyk, R. Feifel, L. Avaldi et al, “Femtosecond X-ray-induced explosion of at extreme intensity”, Nat. Commun., 5 (2014), 60 | DOI

[71] N. Berrah, A. Sanchez-Gonzalez, Z. Jurek, H. Xiong, R. Obaid, R. J. Squibb, T. Osipov, A. Lutman, L. Fang, T. Barillot et al, “Author Correction: Femtosecond-resolved observation of the fragmentation of buckminsterfullerene following X-ray multiphoton ionization”, Nat. Phys., 15 (2019), 1301 | DOI

[72] K. Nass, L. Foucar, T. R. M. Barends, E. Hartmann, S. Botha, R. L. Shoeman, R. B. Doak, R. Alonso-Mori, A. Aquila, S. Bajt et al., “Indications of radiation damage in ferredoxin microcrystals using high-intensity X-FEL beams”, J. Synchrotron Rad., 22 (2015), 225–238 | DOI

[73] J. Wang, “Destruction-and-diffraction by X-ray free-electron laser”, Protein Sci., 25 (2016), 1585–1592 | DOI

[74] I. Inoue, Y. Inubushi, T. Sato, K. Tono, T. Katayama, T. Kameshima, K. Ogawa, T. Togashi, S. Owada, Y. Amemiya et al, “Observation of femtosecond X-ray interactions with matter using an X-ray-X-ray pump-probe scheme”, Proc. Natl. Acad. Sci. USA, 113 (2016), 1492–1497 | DOI

[75] K. Nass, A. Gorel, M. M. Abdullah, A. V. Martin, M. Kloos, A. Marinelli, A. Aquila, T. R. M. Barends, F. J. Decker, B. Doak et al, “Structural dynamics in proteins induced by and probed with X-ray free-electron laser pulses”, Nat. Commun., 11 (2020), 1814 | DOI

[76] N. L. Opara, I. Mohacsi, M. Makita, D. Castano-Diez, A. Diaz, P. Juranić, M. Marsh, A. Meents, C. J. Milne, A. Mozzanica et al, “Demonstration of femtosecond X-ray pump X-ray probe diffraction on protein crystals”, Struct. Dyn., 5 (2018), 054303 | DOI

[77] A. Munke, J. Andreasson, A. Aquila, S. Awel, K. Ayyer, A. Barty, R. J. Bean, P. Berntsen, J. Bielecki, S. Boutet et al, “Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source”, Sci. Data, 3 (2016), 160064 | DOI

[78] R. P. Kurta, J. J. Donatelli, C. H. Yoon, P. Berntsen, J. Bielecki, B. J. Daurer, H. DeMirci, P. Fromme, M. F. Hantke, F. R.N. C. Maia et al, “Correlations in Scattered X-Ray Laser Pulses Reveal Nanoscale Structural Features of Viruses”, Phys. Rev. Lett., 119 (2017), 158102 | DOI

[79] C. Östlin, N. Tîmneanu, H. O. Jönsson, T. Ekeberg, A. V. Martin, C. Caleman, “Reproducibility of single protein explosions induced by X-ray lasers”, Phys. Chem. Chem. Phys., 20 (2018), 12381–12389 | DOI

[80] C. Östlin, N. Timneanu, C. Caleman, A. V. Martin, Is radiation damage the limiting factor in high-resolution single particle imaging with X-ray free-electron lasers, Struct. Dyn., 6 (2019), 044103 | DOI

[81] K. Nass, “Radiation damage in protein crystallography at X-ray free-electron lasers”, Acta Crystallogr. D. Struct. Biol., 75 (2019), 211–218 | DOI

[82] J. L. Campbell, T. Papp, “Widths of the atomic K-N7 levels”, At. Data Nucl. Data Tables, 77 (2001), 1–56 | DOI

[83] S.-K. Son, L. Young, R. Santra, “Impact of hollow-atom formation on coherent x-ray scattering at high intensity”, Phys. Rev. A, 83 (2011), 033402 | DOI

[84] V. Y. Lunin, A. N. Grum-Grzhimailo, E. V. Gryzlova, D. O. Sinitsyn, T. E. Petrova, N. L. Lunina, N. K. Balabaev, K. B. Tereshkina, A. S. Stepanov, Y. F. Krupyanskii, “Efficient calculation of diffracted intensities in the case of non-stationary scattering by biological macromolecules under XFEL pulse”, Acta Crystallographica D, 71 (2015), 293–303 | DOI

[85] H. N. Chapman, A. Barty, M. Bogan, S. Boutet, M. Frank, S. P. Hau-Riege, S. Marchesini et al, “Femtosecond diffractive imaging with a soft-X-ray free-electron laser”, Nat. Phys., 2 (2006), 839–843 | DOI

[86] M. M. Seibert, T. Ekeberg, F. R. Maia, M. Svenda, J. Andreasson, O. Jönsson, D. Odić, B. Iwan, A. Rocker, D. Westphal et al, “Single mimivirus particles intercepted and imaged with an X-ray laser”, Nature, 470 (2011), 78–81 | DOI

[87] M. F. Hantke, D. Hasse, F. R. N. C. Maia, T. Ekeberg, K. John, M. Svenda, N. D. Loh, A. V. Martin, N. Timneanu, D. S. D. Larsson et al, “High-throughput imaging of heterogeneous cell organelles with an x-ray laser”, Nat. Photonics, 8 (2014), 943–949 | DOI | MR

[88] G. van der Schot, M. Svenda, F. R. N. C. Maia, M. Hantke, D. P. DePonte, M. M. Seibert, A. Aquila, J. Schulz, R. Kirian, M. Liang, F. Stellato et al, “Imaging single cells in a beam of live cyanobacteria with an x-ray laser”, Nat. Commun., 6 (2015), 5704 | DOI

[89] T. Ekeberg, M. Svenda, C. Abergel, F. R.N. C. Maia, V. Seltzer, J. M. Claverie, M. Hantke, O. Jönsson, C. Nettelblad, G. van der Schot et al, “Three-Dimensional Reconstruction of the Giant Mimivirus Particle with an X-Ray Free-Electron Laser”, Phys. Rev. Lett., 114 (2015), 098102 | DOI

[90] H. K. N. Reddy, C. H. Yoon, A. Aquila, S. Awel, K. Ayyer, A. Barty, P. Berntsen, J. Bielecki, S. Bobkov, M. Bucher, “Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac coherent light source”, Sci. Data, 4 (2017), 170079 | DOI

[91] B. J. Daurer, K. Okamoto, J. Bielecki, F. R. N. C. Maia, K. Muhlig, M. M. Seibert, M. F. Hantke, C. Nettelblad, W. H. Benner, M. Svenda et al., “Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses”, IUCrJ, 4 (2017), 251–262 | DOI

[92] I. V. Lundholm, J. A. Sellberg, T. Ekeberg, M. F. Hantke, K. Okamoto, G. van der Schot, J. Andreasson, A. Barty, J. Bielecki, P. Bruza et al, “Considerations for three-dimensional image reconstruction from experimental data in coherent diffractive imaging”, IUCrJ, 5 (2018), 531–541 | DOI

[93] D. P. DePonte, U. Weierstall, K. Schmidt, J. Warner, D. Starodub, J. C.H. Spence, R. B. Doak, “Gas dynamic virtual nozzle for generation of microscopic droplet streams”, J. Phys. D Appl. Phys., 41 (2008), 195505 | DOI

[94] M. Yamashita, J. B. Fenn, “Electrospray ion source. Another variation on the free-jet theme”, J. Phys. Chem., 88 (1984), 4451–4459 | DOI

[95] A. M. Gañan-Calvo, J. M. Montanero, “Revision of capillary cone-jet physics: Electrospray and flow focusing”, Phys. Rev. E, 79 (2009), 066305 | DOI

[96] M. F. Hantke, J. Bielecki, O. Kulyk, D. Westphal, D. S.D. Larsson, M. Svenda, H. K.N. Reddy, R. A. Kirian, J. Andreasson, J. Hajdu et al, “Rayleigh-scattering microscopy for tracking and sizing nanoparticles in focused aerosol beams”, IUCrJ, 5 (2018), 673–680 | DOI

[97] J. Bielecki, M. F. Hantke, B. J. Daurer, H. K. N. Reddy, D. Hasse, D. S.D. Larsson, L. H. Gunn, M. Svenda, A. Munke, J. A. Sellberg et al, “Electrospray sample injection for single-particle imaging with x-ray lasers”, Sci. Adv., 5 (2019), eaav8801 | DOI

[98] J. Miao, K. O. Hodgson, T. Ishikawa, C. A. Larabell, M. A. LeGros, Y. Nishino, “Imaging whole Escherichia coli bacteria by using single-particle x-ray diffraction”, Proc. Natl. Acad. Sci. USA, 100 (2003), 110–112 | DOI

[99] D. Shapiro, P. Thibault, T. Beetz, V. Elser, M. Howells, C. Jacobsen, J. Kirz, E. Lima, H. Miao, A. M. Neiman et al, “Biological imaging by soft x-ray diffraction microscopy”, Proc. Natl. Acad. Sci. USA, 102 (2005), 15343–15346 | DOI

[100] C. Song, K. Tono, J. Park, T. Ebisu, S. Kim, H. Shimada, S. Kim, M. Gallagher-Jones, D. Nam, T. Sato et al, “Multiple application X-ray imaging chamber for single-shot diffraction experiments with femtosecond X-ray laser pulses”, J. Appl. Cryst., 47 (2014), 188–197 | DOI

[101] I. Robinson, J. Schwenke, M. Yusuf, A. Estandarte, F. Zhang, B. Chen, J. Clark, Ch. Song, D. Nam, Y. Joti et al, “Towards single particle imaging of human chromosomes at SACLA”, J. Phys. B: At. Mol. Opt. Phys., 48 (2015), 244007 | DOI

[102] C. Seuring, K. Ayyer, E. Filippaki, M. Barthelmess, J. N. Longchamp, P. Ringler, T. Pardini, D. H. Wojtas, M. A. Coleman, K. Dörner et al, “Femtosecond X-ray coherent diffraction of aligned amyloid fibrils on low background graphene”, Nat. Commun., 9 (2018), 1836 | DOI

[103] Y. Takayama, K. Yonekura, “Cryogenic coherent X-ray diffraction imaging of biological samples at SACLA: a correlative approach with cryo-electron and light microscopy”, Acta Crystallogr. A, 72 (2016), 179–189 | DOI

[104] M. Altarelli, “The European X-ray free-electron laser facility in Hamburg”, Nucl. Instrum. Methods. Phys. Res. B, 269 (2011), 2845–2849 | DOI

[105] B. von Ardenne, M. Mechelke, H. Grubmüller, “Structure determination from single molecule X-ray scattering with three photons per image”, Nat. Commun., 9 (2018), 2375 | DOI

[106] A. Allahgholi, J. Becker, L. Bianco, R. Bradford, A. Delfs, R. Dinapoli, P. Goettlicher, M. Gronewald, H. Graafsma, D. Greiffenberg et al, “The adaptive gain integrating pixel detector”, J. Instrum., 11 (2016), 02066 | DOI

[107] D. Mezza, A. Allahgholi, G. Arino-Estrada, L. Bianco, A. Delfs, R. Dinapoli, P. Goettlicher, H. Graafsma, D. Greiffenberg, H. Hirsemann et al, “Characterization of AGIPD1.0: the full scale chip”, Nucl. Instrum. Methods Phys. Res. A, 838 (2016), 39–46 | DOI

[108] A. Allahgholi, J. Becker, A. Delfs, R. Dinapoli, P. Goettlicher, D. Greiffenberg, B. Henrich, H. Hirsemann, M. Kuhn, R. Klanner et al, “The Adaptive Gain Integrating Pixel Detector at the European XFEL”, J. Synchrotron Radiat., 26 (2019), 74–82 | DOI

[109] H. T. Philipp, M. Hromalik, M. Tate, L. Koerner, S. M. Gruner, “Pixel array detector for Xray free electron laser experiments”, Nucl. Instrum. Methods Phys. Res. A, 649 (2011), 67–69 | DOI

[110] G. Blaj, P. Caragiulo, G. Carini, A. Dragone, G. Haller, P. Hart, J. Hasi, R. Herbst, C. Kenney, B. Markovic et al, “Future of ePix detectors for high repetition rate FELs”, AIP Conference Proceedings, 1741 (2016), 040012 | DOI

[111] F. Leonarski, S. Redford, A. Mozzanica, C. Lopez-Cuenca, E. Panepucci, K. Nass, D. Ozerov, L. Vera, V. Olieric, D. Buntschu et al, “Fast and accurate data collection for macromolecular crystallography using the JUNGFRAU detector”, Nat. Methods, 15 (2018), 799–804 | DOI

[112] S. Redford, A. Bergamaschi, M. Brückner, S. Cartier, R. Dinapoli, Y. Ekinci, E. Fröjdh, D. Greiffenberg, D. Mayilyan, D. Mezza et al, “Calibration status and plans for the charge integrating JUNGFRAU pixel detector for SwissFEL”, J. Instrum., 11 (2016), 11013 | DOI

[113] P. Goettlicher, A. Allahgholi, J. Becker, L. Bianco, A. Delfs, R. Dinapoli, E. Fretwurst, E. Fretwurst, H. Graafsma, D. Greiffenberg et al, “AGIPD, the electronics for a high speed X-ray imager at the Eu-XFEL”, Proceedings of TIPP2014 — Technology and Instrumentation in Particle Physic, 2014, 253

[114] A. P. Mancuso, A. Aquila, L. Batchelor, R. J. Bean, J. Bielecki, G. Borchers, K. Doerner, K. Giewekemeyer, R. Graceffa, O. D. Kelsey et al, “The Single Particles, Clusters and Biomolecules and Serial Femtosecond Crystallography instrument of the European XFEL: initial installation”, J. Synchrotron Radiat., 26 (2019), 660–676 | DOI

[115] M. Gasthuber, S. Dietrich, J. Malka, M. Kuhn, U. Ensslin, K. Wrona, J. Szuba, “Online Offline data storage and data processing at the European XFEL facility”, J. Phys.: Conf. Ser., 898 (2017), 062049 | DOI

[116] S. Hauf, B. Heisen, S. Aplin, M. Beg, M. Bergemann, V. Bondar, D. Boukhelef, C. Danilevsky, W. Ehsan, S. Essenov et al, “The Karabo distributed control system”, J. Synchrotron Radiat., 26 (2019), 1448–1461 | DOI

[117] H. Fangohr, M. Beg, V. Bondar, D. Boukhelef, S. Brockhauser, C. Danilevski, W. Ehsan, S. G. Esenov, G. Flucke, G. Giovanetti et al, “Data Analysis Support in Karabo at European XFEL”, Proc. 16th Int. Conf. on Accelerator and Large Experimental Control Systems, ICALEPCS-17 (Barcelona, Spain, Oct. 2017), 2018, 245–252 | DOI

[118] M. Rose, S. Bobkov, K. Ayyer, R. P. Kurta, D. Dzhigaev, Y. Y. Kim, A. J. Morgan, C. H. Yoon, D. Westphal, J. Bielecki et al, “Single-particle imaging without symmetry constraints at an X-ray free-electron laser”, IUCrJ, 5 (2018), 727–736 | DOI

[119] B. J. Daurer, M. F. Hantke, C. Nettelblad, F. R. N. C. Maia, “Hummingbird: monitoring and analyzing flash X-ray imaging experiments in real time”, J. Appl. Cryst., 49 (2016), 1042–1047 | DOI

[120] A. Barty, R. A. Kirian, F. R. N. C. Maia, M. Hantke, C. H. Yoon, T. A. White, H. Chapman, “Cheetah: software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data”, J. Appl. Cryst., 47 (2014), 1118–1131 | DOI

[121] L. Foucar, A. Barty, N. Coppola, R. Hartmann, P. Holl, U. Hoppe, S. Kassemeyer, N. Kimmel, J. Küpper, Scholz et al, “CASS-CFEL-ASG software suite”, Comput. Phys. Commun., 183 (2012), 2207–2213 | DOI

[122] L. Foucar, “CFEL-ASG Software Suite (CASS): usage for free-electron laser experiments with biological focus”, J. Appl Crystallogr., 49 (2016), 1336–1346 | DOI

[123] D. Damiani, M. Dubrovin, I. Gaponenko, W. Kroeger, T. J. Lane, A. Mitra, C. P. O'Grady, A. Salnikov, A. Sanchez-Gonzalez, D. Schneider, C. H. Yoon, “Linac Coherent Light Source data analysis using psana”, J. Appl. Cryst., 49 (2016), 672–679 | DOI

[124] R. R. Coifman, S. Lafon, “Diffusion maps”, Appl. Comput. Harmon. Anal., 21 (2006), 5–30 | DOI | MR | Zbl

[125] D. Giannakis, P. Schwander, A. Ourmazd, “The symmetries of image formation by scattering. I. Theoretical framework”, Opt. Express, 20 (2012), 12799–12826 | DOI

[126] C. H. Yoon, P. Schwander, C. Abergel, I. Andersson, J. Andreasson, A. Aquila, S. Bajt, M. Barthelmess, A. Barty, M. J. Bogan, C. Bostedt, J. Bozek et al, “Unsupervised classification of single-particle X-ray diffraction snapshots by spectral clustering”, Opt. Express, 19 (2011), 16542–16549 | DOI

[127] K. Giewekemeyer, A. Aquila, N. D. Loh, Y. Chushkin, K. S. Shanks, J. T. Weiss, M. W. Tate, H. T. Philipp, S. Stern, P. Vagovic et al, “Experimental 3D coherent diffractive imaging from photon-sparse random projections”, IUCrJ, 20 (2019), 357–365 | DOI

[128] K. Ayyer, A. J. Morgan, A. Aquila, H. DeMirci, B. G. Hogue, R. A. Kirian, P. L. Xavier, C. H. Yoon, H. N. Chapman, A. Barty, “Low-signal limit of X-ray single particle diffractive imaging”, Opt Express, 27 (2019), 37816–37833 | DOI

[129] N. D. Loh, V. Elser, “Reconstruction algorithm for single-particle diffraction imaging experiments”, Phys. Rev. E, 80 (2009), 026705 | DOI

[130] K. Ayyer, Lan Ti-Yen, V. Elser, N. D. Loh, “Dragonfly: an implementation of the expand-maximize-compress algorithm for single-particle imaging”, J. Appl. Crystallogr., 49 (2016), 1320–1335 | DOI

[131] C. H. Yoon, M. V. Yurkov, E. A. Schneidmiller, L. Samoylova, A. Buzmakov, Z. Jurek, B. Ziaja, R. Santra, N. D. Loh, T. Tschentscher et al, “A comprehensive simulation framework for imaging single particles and biomolecules at the European X-ray FreeElectron Laser”, Sci. Rep., 6 (2016), 24791 | DOI

[132] M. F. Hantke, T. Ekeberg, F. R.H. C. Maia, “A simulation tool for flash X-ray imaging”, J. Appl. Cryst., 49 (2016), 1356–1362 | DOI

[133] V. Yu. Lunin, N. L. Lunina, T. E. Petrova, “Vosstanovlenie modulei i raschet faz dlya difraktsionnoi kartiny izolirovannoi chastitsy s ispolzovaniem binarnykh masok ob'ekta”, Matematicheskaya biologiya i bioinformatika, 15, Suppl. (2020), t1–t20 | DOI

[134] G. Bricogne, “Geometric sources of redundancy in intensity data and their use for phase determination”, Acta Crystallographica A, 30 (1974), 395–405 | DOI

[135] G. Bricogne, “Methods and programs for direct-space exploitation of geometric redundancies”, Acta Crystallographica A, 32 (1976), 832–847 | DOI

[136] V. Y. Lunin, “Use of the fast differentiation algorithm for phase refinement in protein crystallography”, Acta Crystallographica A, 41 (1985), 551–556 | DOI

[137] A. D. Podjarny, B. Rees, A. G. Urzhumtsev, “Density modification in X-ray crystallography”, Crystallographic Methods and Protocols, Methods in Molecular Biology, 56, eds. Jones C., Milloy B., Sanderson M. R., Humana Press, Totowa, New Jersey, 1996, 205–226 | DOI

[138] K. Y. J. Zhang, K. D. Cowtan, P. Main, “Phase improvement by iterative density modification”, International Tables for Crystallography, v. F, eds. E. Arnold, D. M. Himmel, M. G. Rossmann, John Wiley and Sons, Chichester, 2012, 385–400 | DOI

[139] J. R. Fienup, “Reconstruction of an object from the modulus of its Fourier transform”, Optics Letters, 3:1 (1978), 27–29 | DOI

[140] B. C. Wang, “Resolution of phase ambiguity in macromolecular crystallography”, Methods in Enzymology, 115 (1985), 90–111 | DOI

[141] J. P. Abrahams, “Bias reduction in phase refinement by modified interference functions: introducing the $\gamma$-correction”, Acta Crystallographica D, 53 (1997), 371–376 | DOI

[142] G. Oslányi, A. Sütő, “Ab initio structure solution by charge flipping”, Acta Crystallographica A, 60 (2004), 134–141 | DOI

[143] S. Marchesini, “A unified evaluation of iterative projection algorithms for phase retrieval”, Rev. Sci. Instrum., 78 (2007), 011301 | DOI

[144] F. R. N. C. Maia, T. Ekeberg, D. Spoel, J. Hajdu, “Hawk: the image reconstruction package for coherent X-ray diffractive imaging”, J. Applied Crystallography, 43 (2010), 1535–1539 | DOI

[145] R. Millane, V. L. Lo, “Iterative projection algorithms in protein crystallography. I. Theory”, Acta Crystallographica A, 69 (2013), 517–527 | DOI | MR | Zbl

[146] A. G. Urzhumtsev, The use of local averaging in analysis of macromolecule images at electron density distribution maps, Preprint, Pushchino, 1985 (in Russ.)

[147] A. G. Urzhumtsev, V. Y. Lunin, T. B. Luzyanina, “Bounding a Molecule in a Noisy Synthesis”, Acta Crystallographica A, 45 (1989), 34–39 | DOI

[148] S. Marchesini, H. He, H. N. Chapman, S. P. Hau-Riege, A. Noy, M. R. Howells, U. Weierstall, J. H. C. Spence, “X-ray image reconstruction from a diffraction pattern alone”, Phis. Rev. B, 68 (2003) | DOI

[149] V. Yu. Lunin, N. L. Lunina, T. E. Petrova, “Ispolzovanie svyaznykh masok v zadache vosstanovleniya izobrazheniya izolirovannoi chastitsy po dannym rentgenovskogo rasseyaniya”, Matematicheskaya biologiya i bioinformatika, 9 (2014), 543–562 | DOI

[150] V. Y. Lunin, N. L. Lunina, T. E. Petrova, M. W. Baumstark, A. G. Urzhumtsev, “Mask-based approach to phasing of single-particle diffraction data”, Acta Crystallographica D, 72 (2016), 147–157 | DOI

[151] V. Y. Lunin, N. L. Lunina, T. E. Petrova, M. W. Baumstark, A. G. Urzhumtsev, “Mask-based approach to phasing of single-particle diffraction data. II. Likelihood-based selection criteria”, Acta Crystallographica D, 75 (2019), 79–89 | DOI

[152] N. L. Lunina, T. E. Petrova, A. G. Urzhumtsev, V. Yu. Lunin, “Ispolzovanie svyaznykh masok v zadache vosstanovleniya izobrazheniya izolirovannoi chastitsy po dannym rentgenovskogo rasseyaniya. II. Zavisimost tochnosti resheniya ot shaga diskretizatsii eksperimentalnykh dannykh”, Matematicheskaya biologiya i bioinformatika, 10 (2015), 508–525 | DOI

[153] N. L. Lunina, T. E. Petrova, A. G. Urzhumtsev, V. Yu. Lunin, “Ispolzovanie svyaznykh masok v zadache vosstanovleniya izobrazheniya izolirovannoi chastitsy po dannym rentgenovskogo rasseyaniya. III. Strategii otbora reshenii po rezultatam maksimizatsii pravdopodobiya”, Matematicheskaya biologiya i bioinformatika, 12 (2017), 521–535 | DOI

[154] A. P. Mancuso, Th. Gorniak, F. Staier, O. M. Yefanov, R. Barth, C. Christophis, B. Reime, J. Gulden, A. Singer, M. E. Pettit et al, “Coherent imaging of biological samples with femtosecond pulses at the free electron laser FLASH”, New J. Phys., 12 (2010), 035003 | DOI

[155] M. M. Seibert, S. Boutet, M. Svenda, T. Ekeberg, F. R. N. C. Maia, M. J. Bogan, N. Nicusor Tîmneanu, A. Anton Barty, S. Stefan Hau-Riege, C. Caleman, “Femtosecond diffractive imaging of biological cells”, J. Phys. B: At. Mol. Opt. Phys., 43 (2010), 194015 | DOI

[156] M. Gallagher-Jones, Y. Bessho, S. Kim, J. Park, S. Kim, D. Nam, C. Kim, Y. Kim, Y. Noh do, O. Miyashita et al, “Macromolecular structures probed by combining singleshot free-electron laser diffraction with synchrotron coherent X-ray imaging”, Nat. Commun., 5 (2014), 3798 | DOI

[157] R. Xu, H. Jiang, C. Song, J. A. Rodriguez, Z. Huang, C. C. Chen, D. Nam, J. Park, M. Gallagher-Jones, S. Kim et al, “Single-shot three-dimensional structure determination of nanocrystals with femtosecond X-ray free-electron laser pulses”, Nat. Commun., 5 (2014), 4061 | DOI

[158] Y. Takayama, Y. Inui, Y. Sekiguchi, A. Kobayashi, T. Oroguchi, M. Yamamoto, S. Matsunaga, M. Nakasako, “Coherent X-Ray Diffraction Imaging of Chloroplasts from Cyanidioschyzon merolae by Using X-Ray Free Electron Laser”, Plant Cell Physiol., 56 (2015), 1272–1286 | DOI

[159] M. Nakano, O. Osamu Miyashita, S. Jonic, A. Tokuhisa, F. Tama, “Single-particle XFEL 3D reconstruction of ribosome-size particles based on Fourier slice matching: requirements to reach subnanometer resolution”, J. Synchrotron Radiat., 25 (2018), 1010–1021 | DOI

[160] F. R. N. C. Maia, “The Coherent X-ray Imaging Data Bank”, Nat. methods, 9 (2012), 854–855 | DOI

[161] J. Fan, Z. Sun, Y. Wang, J. Park, S. Kim, M. Gallagher-Jones, Y. Kim, C. Song, S. Yao, J. Zhang et al, “Single-pulse enhanced coherent diffraction imaging of bacteria with an Xray free-electron laser”, Sci. Rep., 6 (2016), 34008 | DOI

[162] A. Hosseinizadeh, G. Mashayekhi, J. Copperman, P. Schwander, A. Dashti, R. Sepehr, R. Fung, M. Schmidt, C. H. Yoon, B. G. Hogue et al, “Conformational landscape of a virus by single-particle X-ray scattering”, Nat. Methods, 4 (2017), 877–881 | DOI

[163] A. Aquila, A. Barty, C. Bostedt, S. Boutet, G. Carini, D. dePonte, P. Drell, S. Doniach, K. H. Downing, T. Earnest, “The linac coherent light source single particle imaging road map”, Structural Dynamics, 2 (2015), 041701 | DOI