Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2020_15_2_a18, author = {A. M. Andrianov and Yu. V. Kornoushenko and A. D. Karpenko and I. P. Bosko and Zh. V. Ignatovich and E. V. Koroleva}, title = {Rational design of potential {Bcr-Abl} tyrosine kinase inhibitors by the methods of molecular modeling}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {396--415}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a18/} }
TY - JOUR AU - A. M. Andrianov AU - Yu. V. Kornoushenko AU - A. D. Karpenko AU - I. P. Bosko AU - Zh. V. Ignatovich AU - E. V. Koroleva TI - Rational design of potential Bcr-Abl tyrosine kinase inhibitors by the methods of molecular modeling JO - Matematičeskaâ biologiâ i bioinformatika PY - 2020 SP - 396 EP - 415 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a18/ LA - ru ID - MBB_2020_15_2_a18 ER -
%0 Journal Article %A A. M. Andrianov %A Yu. V. Kornoushenko %A A. D. Karpenko %A I. P. Bosko %A Zh. V. Ignatovich %A E. V. Koroleva %T Rational design of potential Bcr-Abl tyrosine kinase inhibitors by the methods of molecular modeling %J Matematičeskaâ biologiâ i bioinformatika %D 2020 %P 396-415 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a18/ %G ru %F MBB_2020_15_2_a18
A. M. Andrianov; Yu. V. Kornoushenko; A. D. Karpenko; I. P. Bosko; Zh. V. Ignatovich; E. V. Koroleva. Rational design of potential Bcr-Abl tyrosine kinase inhibitors by the methods of molecular modeling. Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020) no. 2, pp. 396-415. http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a18/
[1] W. J. Köstler, C. C. Zielinski, “Targeting Receptor Tyrosine Kinases in Cancer”, Receptor Tyrosine Kinases: Structure, Functions and Role in Human Disease, eds. D. L. Wheeler, Y. Yarden, Springer Science Business Media, New York, 2015, 78–225
[2] G. Maurer, B. Tarkowski, M. Baccarini, “Raf kinases in cancer-roles and therapeutic opportunities”, Oncogene, 30 (2011), 3477–3488 | DOI
[3] A. Bardelli, D. W. Parsons, N. Silliman, J. Ptak, S. Szabo, S. Saha, S. Markowitz, J. K.V. Willson, G. Parmigiani, K. W. Kinzler, B. Vogelstein, V. E. Velculescu, “Mutational analysis of the tyrosine kinome in colorectal cancers”, Science, 300:5621 (2003), 949 | DOI
[4] C. R. Bartram, A. de Klein, A. Hagemeijer, T. van Agthoven, A. Geurts van Kessel, D. Bootsma, G. Grosveld, M. A. Ferguson-Smith, T. Davies, M. Stone et al, “Translocation of c-abl oncogene correlates with the presence of a Philadelphia chromosome in chronic myelocytic leukaemia”, Nature, 306 (1983), 277–280 | DOI
[5] P. A. Futreal, L. Coin, M. Marshall, T. Down, T. Hubbard, R. Wooster, N. Rahman, M. R. Stratton, “A census of human cancer genes”, Nat. Rev. Cancer, 4 (2004), 177–183 | DOI
[6] H. Kittler, P. Tschand, “Driver mutations in the mitogen-activated protein kinase pathway: the seeds of good and evil”, Br. J. Dermat., 178 (2018), 26–27 | DOI
[7] S. Sato, H. Sanjo, K. Takeda, J. Ninomiya-Tsuji, M. Yamamoto, T. Kawai, K. Matsumoto, O. Takeuchi, S. Akira, “Essential function for the kinase TAK1 in innate and adaptive immune responses”, Nat. Immunol., 6:11 (2005), 1087–1095 | DOI
[8] B. K. Mueller, H. Mack, N. Teusch, “Rho kinase, a promising drug target for neurological disorders”, Nat. Rev. Drug. Discov., 4 (2005), 98–387 | DOI
[9] Z. Z. Chong, Y. C. Shang, S. Wang, K. Maiese, “A critical kinase cascade in neurological disorders: PI 3-K, Akt and Mtor”, Future Neurol, 7 (2012), 733–748 | DOI
[10] C. E. Tabit, S. M. Shenouda, M. Holbrook, J. L. Fetterman, S. Kiani, A. A. Frame, M. A. Kluge, A. Held, M. M. Dohadwala, N. Gokce, M. G. Farb, J. Rosenzweig, N. Ruderman, J. A. Vita, N. M. Hamburg, “Protein kinase C-$\beta$ contributes to impaired endothelial insulin signaling in humans with diabetes mellitus”, Circulation, 127 (2013), 86–95 | DOI
[11] K. S. Bhullar, N. O. Lagarón, E. M. McGowan, I. Parmar, A. Jha, B. P. Hubbard, H. P. V. Rupasinghe, “Kinase-targeted cancer therapies: progress, challenges and future directions”, Mol. Cancer, 17 (2018), 48 | DOI
[12] A. C. Dar, K. M. Shokat, “The evolution of protein kinase inhibitors from antagonists to agonists of cellular signaling”, Annu. Rev. Biochem., 80 (2011), 769–795 | DOI
[13] R. Roskoski, “Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes”, Pharmacol. Res., 103 (2016), 26–48 | DOI
[14] H. Kantarjian, C. Sawyers, A. Hochhaus, F. Guilhot, C. Schiffer, C. Gambacorti-Passerini, D. Niederwieser, D. Resta, R. Capdeville, U. Zoellner et al, “Hematologic and cytogenetic responses to imatinib mesylate in chronic leukemia”, New Engl. J. Med., 346 (2002), 645–652 | DOI
[15] “Imatinib. New indications, but not robust evidence”, Prescrire Int., 95 (2008), 91–94
[16] S. G. O'Brien, F. Guilhot, R. A. Larson, I. Gathmann, M. Baccarani, F. Cervantes, J. J. Cornelissen, T. Fischer, A. Hochhaus, T. Hughes et al, “IRIS Investigators. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia”, New Engl. J. Med., 348 (2003), 994–1004 | DOI
[17] B. J. Druker, F. Guilhot, S. G. O'Brien, I. Gathmann, H. Kantarjian, N. Gattermann, M. W.N. Deininger, R. T. Silver, J. M. Goldman, R. M. Stone et al, “Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia”, New Engl. J. Med., 355 (2006), 2408–2417 | DOI
[18] A. Hochhaus, R. A. Larson, F. Guilhot, J. P. Radich, S. Branford, T. P. Hughes, M. Baccarani, M. W. Deininger, F. Cervantes, S. Fujihara et al, “Long-term outcomes of imatinib treatment for chronic myeloid leukemia”, New Engl. J. Med, 376:10 (2017), 917–927 | DOI
[19] N. P. Shah, C. Tran, F. Y. Lee, P. Chen, D. Norris, C. L. Sawyers, “Overriding imatinib resistance with a novel ABL kinase inhibitor”, Science, 305:5682 (2004), 399–401 | DOI
[20] L. J. Lombardo, F. Y. Lee, P. Chen, D. Norris, J. C. Barrish, K. Behnia, S. Castaneda, L. A.M. Cornelius, J. Das, A. M. Doweyko et al, “Discovery of N-(2-chloro-6-methyl-phenyl)-2-(6-(4-(2-hydroxyethyl)-piperazin-1-yl)-2-methylpyrimidin-4-ylamino) thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays”, J. Med. Chem., 47:27 (2004), 6658–6661 | DOI
[21] A. Hochhaus, R. A. Larson, F. Guilhot, J. P. Radich, S. Branford, T. P. Hughes, M. Baccarani, M. W. Deininger, F. Cervantes, S. Fujihara et al, “Long-term outcomes of imatinib treatment for chronic myeloid leukemia”, N. Engl. J. Med., 376 (2017), 917–927 | DOI
[22] S. Davies, H. Reddy, M. Caivano, P. Cohen, “Specificity and mechanism of action of some commonly used protein kinase inhibitors”, Biochem. J., 351 (2000), 95–105 | DOI
[23] T. O'Hare, “A decade of nilotinib and dasatinib: From in vitro studies to first-line tyrosine kinase inhibitors”, Cancer Res., 76:20 (2016), 5911–5913 | DOI
[24] G. Saglio, D. W. Kim, S. Issaragrisil, P. le Coutre, G. Etienne, C. Lobo, R. Pasquini, R. E. Clark, A. Hochhaus, T. P. Hughes et al, “Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia”, New Engl. J. Med., 362:24 (2010), 2251–2259 | DOI
[25] H. M. Kantarjian, A. Hochhaus, G. Saglio, C. De Souza, I. W. Flinn, L. Stenke, Y. T. Goh, G. Rosti, H. Nakamae, N. J. Gallagher et al, “Nilotinib versus imatinib for the treatment of patients with newly diagnosed chronic phase, Philadelphia chromosome-positive, chronic myeloid leukaemia: 24-month minimum follow-up of the phase 3 randomised ENESTnd trial”, The Lancet Oncol, 12:9 (2011), 841–851 | DOI
[26] F. H. Tan, T. L. Putoczki, S. S. Stylli, R. B. Luwor, “Ponatinib: a novel multi-tyrosine kinase inhibitor against human malignancies”, OncoTargets Ther., 12 (2019), 635–645 | DOI
[27] J. H. Lipton, C. Chuah, A. Guerci-Bresler, G. Rosti, D. Simpson, S. Assouline, G. Etienne et al, “Ponatinib versus imatinib for newly diagnosed chronic myeloid leukaemia: An international, randomised, open-label, phase 3 trial”, The Lancet Oncol., 17:5 (2016), 612–621 | DOI
[28] D. Wang, H. Pan, Y. Wang, “T315L: a novel mutation within BCR-ABL kinase domain confers resistance against ponatinib”, Leuk. Lymphoma, 58:7 (2017), 1733–1735 | DOI
[29] H. M. Kantarjian, J. E. Cortes, D. W. Kim, H. J. Khoury, T. H. Brümmendorf, K. Porkka, G. Martinelli, S. Durrant, E. Leip, V. Kelly et al, “Bosutinib safety and management of toxicity in leukemia patients with resistance or intolerance to imatinib and other tyrosine kinase inhibitors”, Blood, 123:9 (2014), 1309–1318 | DOI
[30] J. E. Cortes, D. W. Kim, H. M. Kantarjian, T. H. Brümmendorf, I. Dyagil, L. Griskevicius, H. Malhotra, C. Powell, K. Gogat, A. M. Countouriotis, C. J. Gambacorti-Passerini, “Bosutinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia: Results from the BELA trial”, Clin. Oncol., 30:28 (2012), 3486–3492 | DOI
[31] Brümmendorf T.H., Cortes J.E., de Souza C.A., Guilhot F., Duvillié L., Pavlov D., Gogat K., Countouriotis A.M., Gambacorti-Passerini C., “Bosutinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukaemia: Results from the 24-month follow-up of the BELA trial”, Br. J. Haematol., 168:1 (2015), 69–81 | DOI
[32] Kantarjian H.M., Cortes J.E., Kim D.W., Khoury H.J., Brümmendorf T.H., Porkka K., Martinelli G., Durrant S., Leip E., Kelly V., Turnbull K., Besson N., Gambacorti-Passerini C., “Bosutinib safety and management of toxicity in leukemia patients with resistance or intolerance to imatinib and other tyrosine kinase inhibitors”, Blood, 123:9 (2014), 1309–1318 | DOI
[33] J. J.P. Stewart, “Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters”, J. Mol. Model, 19 (2013), 1–32 | DOI
[34] K. R. Cousins, “Computer review of ChemDraw Ultra 12.0”, J. Am. Chem. Soc., 133:21 (2011), 8388 | DOI
[35] Open Babel: The Open Source Chemistry Toolbox, (accessed 02.12.2020) http://openbabel.org/wiki/Main_Page
[36] A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard III, W. M. Skiff, “UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations”, J. Am. Chem. Soc., 114:25 (1992), 10024–10035 | DOI
[37] A. Alhossary, S. D. Handoko, Y. Mu, C. K. Kwoh, “Fast, accurate, and reliable molecular docking with QuickVina 2”, Bioinformatics, 31:13 (2015), 2214–2216 | DOI
[38] T. Zhou, L. Commodore, W. S. Huang, Y. Wang, M. Thomas, J. Keats, Q. Xu, V. M. Rivera, W. C. Shakespeare, T. Clackson et al, “Structural mechanism of the Pan-BCR-ABL inhibitor ponatinib (AP24534): Lessons for overcoming kinase inhibitor resistance”, Chem. Biol. Drug Des., 77:1 (2011), 1–11 | DOI
[39] M. A. Seeliger, B. Nagar, F. Frank, X. Cao, M. N. Henderson, J. Kuriyan, “C-Src binds to the cancer drug imatinib with an inactive Abl/c-Kit conformation and a distributed thermodynamic penalty”, Structure, 15:3 (2007), 299–311 | DOI | MR
[40] E. Weisberg, P. W. Manley, W. Breitenstein, J. Brueggen, S. W. Cowan-Jacob, A. Ray, B. Huntly, D. Fabbro, G. Fendrich, E. Hall-Meyers, A. L. Kung, J. Mestan, G. Q. Daley, L. Callahan, L. Catley, C. Cavazza, M. Azam, D. Neuberg, R. D. Wright, D. G. Gilliland, J. D. Griffin, “Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl”, Cancer Cell, 7:2 (2005), 129–141 | DOI
[41] J. S. Tokarski, J. Newitt, C. Y.J. Chang, J. D. Cheng, M. Wittekind, S. E. Kiefer, K. Kish, F. Y.F. Lee, R. Borzilerri, L. J. Lombardo, D. Xie, Y. Zhang, H. E. Klei, “The Structure of Dasatinib (BMS-354825) Bound to Activated ABL Kinase Domain Elucidates Its Inhibitory Activity against Imatinib-Resistant ABL Mutants”, Cancer Res, 66 (2006), 5790–5797 | DOI
[42] T. Horio, T. Hamasaki, T. Inoue, T. Wakayama, S. Itou, H. Naito, T. Asaki, H. Hayase, T. Niwa, “Structural factors contributing to the Abl/Lyn dual inhibitory activity of 3-substituted benzamide derivatives”, Bioorg. Med. Chem. Lett, 17 (2007), 2712–2717 | DOI
[43] J. J.P. Stewart, MOPAC2016, Stewart Computational Chemistry, Colorado Springs, Google Scholar, 2016
[44] A. Klamt, G. J. Schüürmann, “COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient”, Chem. Soc. Perkin Trans., 2 (1993), 799–805 | DOI
[45] I. M. Høyvik, B. Jansik, P. Jørgensen, “Trust region minimization of orbital localization functions”, J. Chem. Theory Comput., 8 (2012), 3137–3146 | DOI
[46] D. A. Case, K. Belfon, I. Y. Ben-Shalom, S. R. Brozell, D. S. Cerutti, T. E. Cheatham III, V. W.D. Cruzeiro, T. A. Darden, R. E. Duke, G. Giambasu et al, AMBER 2020, University of California, San Francisco, 2020
[47] J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, D. A. Case, “Development and testing of a general Amber force field”, J. Comput. Chem., 25 (2004), 1157–1174 | DOI
[48] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, M. L. Klein, “Comparison of simple potential functions for simulating liquid water”, J. Chem. Phys., 79:2 (1983), 926–935 | DOI
[49] J. P. Ryckaert, G. Ciccotti, H. J.C. Berendsen, “Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes”, J. Comput. Phys., 23:3 (1977), 327–341 | DOI
[50] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, L. G. Pedersen, “A smooth particle mesh Ewald method”, J. Chem. Phys., 103 (1995), 8577–8593 | DOI
[51] J. D. Durrant, J. A. McCammon, “BINANA: A novel algorithm for ligand-binding characterization”, J. Mol. Graph. Model, 29:6 (2011), 888–893 | DOI
[52] E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E. Ferrin, “UCSF Chimera a visualization system for exploratory research and analysis”, J. Comput. Chem., 25:13 (2004), 1605–1612 | DOI
[53] I. K. McDonald, J. M. Thornton, “Satisfying hydrogen bonding potential in proteins”, J. Mol. Biol., 238:5 (1994), 777–793 | DOI
[54] J. D. Durrant, J. A. McCammon, “NNScore 2.0: A neural-network receptor-ligand scoring function”, J. Chem. Inf. Model., 51:11 (2011), 2897–2903 | DOI
[55] G. Sharma, E. A. First, “Thermodynamic analysis reveals a temperature-dependent change in the catalytic mechanism of Bacillus stearothermophilus tyrosyl-tRNA synthetase”, J. Biol. Chem., 284:7 (2009), 4179–4190 | DOI
[56] S. Genheden, U. Ryde, “The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinity”, Expert Opin. Drug Discov., 10:5 (2015), 449–461 | DOI
[57] L. Xu, H. Sun, Y. Li, J. Wang, T. Hou, “Assessing the performance of MM/PBSA and MM/GBSA methods. 3. The impact of force fields and ligand charge models”, J. Phys. Chem. B, 117:28 (2013), 8408–8421 | DOI
[58] H. Sun, Y. Li, S. Tian, L. Xu, T. Hou, “Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set”, Phys. Chem. Chem. Phys., 16 (2014), 16719–16729 | DOI
[59] C. A. Lipinski, F. Lombardo, B. W. Dominy, P. J. Feeney, “Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings”, Adv. Drug Del. Rev., 46:1–3 (2001), 11259830, 3–26 | DOI
[60] A. S. Christensen, T. Kubař, Q. Cui, M. Elstner, “Semiempirical quantum mechanical methods for noncovalent interactions for chemical and biochemical applications”, Chem. Rev., 116:9 (2016), 5301–5337 | DOI
[61] A. Cherkasov, E. N. Muratov, D. Fourches, A. Varnek, II. Baskin, M. Cronin, J. Dearden, P. Gramatica, Y. C. Martin, R. Todeschini, V. Consonni, V. E. Kuz'min, R. Cramer, R. Benigni, C. Yang, J. Rathman, L. Terfloth, J. Gasteiger, A. Richard, A. Tropsha, QSAR modeling: where have you been? Where are you going to?, J. Med. Chem., 57:12 (2014), 4977–5010 | DOI
[62] C. Kuseva, T. W. Schultz, D. Yordanova, K. Tankova, S. Kutsarova, T. Pavlov, A. Chapkanov, M. Georgiev, A. Gissi, T. Sobanski, O. G. Mekenyan, “The implementation of RAAF in the OECD QSAR Toolbox”, Reg. Toxicol. Pharmacol., 105 (2019), 51–61 | DOI