Transmission of acute respiratory infections in a city: agent-based approach
Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020) no. 2, pp. 338-356.

Voir la notice de l'article provenant de la source Math-Net.Ru

An incidence curve of acute respiratory infections in Moscow has three picks between September and April and reaches its maximum in January–February. The emergence of new strains of influenza A could account for only one pick a year. The most cases of common cold are caused by ubiquitous low pathogenic viruses. In order to simulate weekly fluctuation of incidence rate of acute respiratory illnesses we developed an agent-based model. It contains 10 millions agents with such attributes as sex, age, social status, levels of specific immune memory and lists of contacts. Each agent can contact with members of its household, colleagues or classmates. Through such contacts susceptible agent can be infected with one of seven circulating respiratory viruses. Viruses differ in their immunologic properties and assume to present influenza A virus, influenza B virus, parainfluenza, adenovirus, coronavirus, rhinovirus and respiratory syncytial virus. The rate of transmission depends on duration of contact, vulnerability of susceptible agent, infectivity of infected agent and air temperature. Proposed network of social interactions proved to be sufficiently detailed as it provided good fitting for observed incidence rate including periods of school holidays and winter public holidays. Additionally, the estimates of basic reproductive rate for the viruses confirm that all these viruses except new strains of influenza A are relatively harmless and unable to cause significant growth of acute respiratory infections morbidity.
@article{MBB_2020_15_2_a17,
     author = {A. I. Vlad and T. E. Sannikova and A. A. Romanyukha},
     title = {Transmission of acute respiratory infections in a city: agent-based approach},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {338--356},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a17/}
}
TY  - JOUR
AU  - A. I. Vlad
AU  - T. E. Sannikova
AU  - A. A. Romanyukha
TI  - Transmission of acute respiratory infections in a city: agent-based approach
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2020
SP  - 338
EP  - 356
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a17/
LA  - ru
ID  - MBB_2020_15_2_a17
ER  - 
%0 Journal Article
%A A. I. Vlad
%A T. E. Sannikova
%A A. A. Romanyukha
%T Transmission of acute respiratory infections in a city: agent-based approach
%J Matematičeskaâ biologiâ i bioinformatika
%D 2020
%P 338-356
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a17/
%G ru
%F MBB_2020_15_2_a17
A. I. Vlad; T. E. Sannikova; A. A. Romanyukha. Transmission of acute respiratory infections in a city: agent-based approach. Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020) no. 2, pp. 338-356. http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a17/

[1] V. F. Uchaikin, N. I. Nisevich, O. V. Shamsheva, Infektsionnye bolezni u detei, uchebnik, GEOTAR-Media, 2011

[2] G.I. Karpukhin (red.), Ostrye negrippoznye respiratornye infektsii, Izd. GIPPOKRAT, S. Peterburg, 1996

[3] W. O. Kermack, A. G. McKendrick, “A contribution to the mathematical theory of epidemics”, Proceedings of the Royal Society of London, 115:772 (1927), 700–721 | DOI | Zbl

[4] W. Liu, S. A. Levin, Y. Iwasa, “Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models”, Journal of Mathematical Biology, 23:2 (1986), 187–204 | DOI | MR | Zbl

[5] M. C. Nucci, P. G. L. Leach, “An integrable SIS model”, Journal of Mathematical Analysis and Applications, 290:2 (2004), 506–518 | DOI | MR | Zbl

[6] M. Y. Li, J. R. Graef, L. Wang, J. Karsai, “Global dynamics of a SEIR model with varying total population size”, Mathematical Biosciences, 160:2 (1999), 191–213 | DOI | MR | Zbl

[7] H. W. Hethcote, “The Mathematics of Infectious Diseases”, SIAM Review, 42:4 (2000), 599–653 | DOI | MR | Zbl

[8] F. C. Billari, A. Prskawetz, Agent-based computational demography: Using simulation to improve our understanding of demographic behaviour, Springer Science Business Media, 2012

[9] L. Perez, S. Dragicevic, “An agent-based approach for modeling dynamics of contagious disease spread”, International Journal of Health Geographics, 8:1 (2009), 50 | DOI

[10] A. M. El-Sayed, P. Scarborough, L. Seemann, S. Galea, “Social network analysis and agent-based modeling in social epidemiology”, Epidemiologic Perspectives Innovations, 9:1 (2012), 1 | DOI | Zbl

[11] M. A. Janssen, E. Ostrom, “Empirically based, agent-based models”, Ecology, Society, 11:2 (2006) | DOI

[12] Z. Wang, J. D. Butner, R. Kerketta, V. Cristini, T. S. Deisboeck, “Simulating cancer growth with multiscale agent-based modeling”, Seminars in Cancer Biology, 30, Academic Press, 2015, 70 | DOI

[13] E. Bonabeau, “From classical models of morphogenesis to agent-based models of pattern formation”, Artificial Life, 3:3 (1997), 191–211 | DOI | MR

[14] A. L. Bauer, C. A. Beauchemin, A. S. Perelson, “Agent-based modeling of host-pathogen systems: The successes and challenges”, Information Sciences, 179:10 (2009), 1379–1389 | DOI

[15] E. Frias-Martinez, G. Williamson, V. Frias-Martinez, “An Agent-Based Model of Epidemic Spread Using Human Mobility and Social Network Information”, IEEE Conference on Social Computing, 2011 | DOI

[16] E. Hunter, B. M. Namee, J. Kelleher, “An open-data-driven agent-based model to simulate infectious disease outbreaks”, PLOS One, 13:12 (2018), e0208775 | DOI

[17] S. Merler, M. Ajelli, L. Fumanelli, M. F. Gomes, A. P. Piontti, L. Rossi, D. L. Chao, I. M. Longini Jr., M. E. Halloran, A. Vespignani, “Spatio-temporal spread of the Ebola 2014 outbreak in Liberia and the effectiveness of non-pharmaceutical interventions: a computational modelling analysis”, The Lancet Infectious Diseases, 15:2 (2015), 204–211 | DOI | MR

[18] Y. Kim, H. Ryu, S. Lee, “Agent-Based Modeling for Super-Spreading Events: A Case Study of MERS-CoV Transmission Dynamics in the Republic of Korea”, International Journal of Environmental Research and Public Health, 15:11 (2018), 2369 | DOI

[19] J. Hackl, T. Dubernet, “Epidemic Spreading in Urban Areas Using Agent-Based Transportation Models”, Future Internet, 11:4 (2019), 92 | DOI

[20] C. Macal, M. North, “Introductory tutorial: Agent-based modeling and simulation”, Proceedings of the Winter Simulation Conference, IEEE, 2014, 6–20 | DOI

[21] A. A. Romanyukha, T. E. Sannikova, I. D. Drynov, “The origin of acute respiratory epidemics”, Herald of the Russian Academy of Sciences, 81:1 (2011), 31–34 | DOI

[22] Gidromettsentr Rossii. Ezhemesyachnye i ezhesutochnye srednie mnogoletnie znacheniya (normy) temperatury vozdukha dlya Moskvy, (data obrascheniya: 15.03.2020) https://meteoinfo.ru/clim-moscow-daily

[23] L. S. Karpova, K. M. Volik, E. A. Smorodintseva, T. P. Stolyarova, N. M. Popovtseva, K. A. Stolyarov, “Vliyanie grippa razlichnoi etiologii na drugie ORVI u detei i vzroslykh v 2014–2016 godakh”, Epidemiologiya i vaktsinoprofilaktika, 17:6 (2018), 35–47 | DOI

[24] Y. B. Seo, J. Y. Song, M. J. Choi, I. S. Kim, T. U. Yang, K. W. Hong, H. J. Cheong, W. J. Kim, “Etiology and Clinical Outcomes ofAcute Respiratory Virus Infection in Hospitalized Adults”, Infect. Chemother., 46:2 (2014), 67–76 | DOI

[25] J. Lessler, N. G. Reich, R. Brookmeyer, T. M. Perl, K. E. Nelson, D. A.T. Cummings, “Incubation periods of acute respiratory viral infections: a systematic review”, The Lancet Infectious Diseases, 9:5 (2009), 291–300 | DOI

[26] S. Esposito, C. Daleno, F. Baldanti, A. Scala, G. Campanini, F. Taroni, E. Fossali, C. Pelucchi, N. N. Principi, “Viral shedding in children infected by pandemic A/H1N1/2009 influenza virus”, Virology Journal, 8:1 (2011), 349 | DOI

[27] F. Carrat, E. Vergu, N. M. Ferguson, M. Lemaitre, S. Cauchemez, S. Leach, A. J. Valleron, “Time Lines of Infection and Disease in Human Influenza: A Review of Volunteer Challenge Studies”, American Journal of Epidemiology, 167:7 (2008), 775–785 | DOI

[28] M. Jane, M. J. Vidal, N. Soldevila, A. Romero, A. Martinez, N. Torner, P. Godoy, C. Launes, C. Rius, M. A. A. Marcos, A. Dominguez, “Epidemiological and clinical characteristics of children hospitalized due to influenza A and B in the south of Europe”, Scientific Reports, 9:1 (2019), 2010–2016 | DOI

[29] K. T. Zlateva, J. J. C. de Vries, F. E. J. Coenjaerts, A. M. van Loon, T. Verheij, P. Little, C. C. Butler, H. Goossens, M. Ieven, E. C. J. Claas, “Prolonged shedding of rhinovirus and re-infection in adults with respiratory tract illness”, European Respiratory Journal, 44:1 (2014), 169–177 | DOI

[30] V. Peltola, M. Waris, L. Kainulainen, J. Kero, O. Ruuskanen, “Virus shedding after human rhinovirus infection in children, adults and patients with hypogammaglobulinaemia”, Clinical Microbiology and Infection, 19:7 (2013), E322–E327 | DOI

[31] C. B. Hall, E. E. Walsh, C. E. Long, K. C. Schnabel, “Immunity to and frequency of reinfection with respiratory syncytial virus”, The Journal of Infectious Diseases, 163:4 (1991), 693–698 | DOI

[32] S. Abels, D. Nadal, A. Stroehle, W. Bossart, “Reliable Detection of Respiratory Syncytial Virus Infection in Children for Adequate Hospital Infection Control Management”, Journal of Clinical Microbiology, 39:1 (2001), 3135–3139 | DOI

[33] J. P. DeVincenzo, T. Wilkinson, A. Vaishnaw, J. Cehelsky, R. Meyers, S. Nochur, L. Harrison, P. Meeking, A. Mann, E. Moane, J. Oxford, R. Pareek, R. Moore, E. Walsh, R. Studholme, P. Dorsett, R. Alvarez, R. Lambkin-Williams, “Viral Load Drives Disease in Humans Experimentally Infected with Respiratory Syncytial Virus”, American Journal of Respiratory and Critical Care Medicine, 182:10 (2010), 1305–1314 | DOI

[34] E. Haque, U. Banik, T. Monwar, L. Anthony, A. K. Adhikary, “Worldwide increased prevalence of human adenovirus type 3 (HAdV-3) respiratory infections is well correlated with heterogeneous hypervariable regions (HVRs) of hexon”, PLOS One, 13:3 (2018) | DOI

[35] A. M. La Rosa, R. E. Champlin, N. Mirza, J. Gajewski, S. Giralt, K. V. Rolston, I. Raad, K. Jacobson, D. Kontoyiannis, L. Elting, E. Whimbey, “Adenovirus Infections in Adult Recipients of Blood and Marrow Transplants”, Clinical Infectious Diseases, 32:6 (2001), 871–876 | DOI

[36] S. Sieg, C. Muro-Cacho, S. Robertson, Y. Huang, D. Kaplan, “Infection and immunoregulation of T lymphocytes by parainfluenza virus type 3”, PNAS, 91:14 (1994), 6293–6297 | DOI

[37] D. Warrell, T. M. Cox, J. Firth, E. Torok (eds.), Oxford Textbook of Medicine: Infection, Oxford University Press, 2012

[38] A. S. Monto, S. K. Lim, “The Tecumseh Study of Respiratory Illness. VI. Frequency of and relationship between outbreaks of coronavirus infection”, The Journal of Infectious Diseases, 129:3 (1974), 271–276 | DOI

[39] D. R. Feikin, W. Fu, D. E. Park, Q. Shi, M. M. Higdon, H. C. Baggett, W. A. Brooks, M. Deloria Knoll, L. L. Hammitt, S. R. C. Howie et al., “Is Higher Viral Load in the Upper Respiratory Tract Associated With Severe Pneumonia? Findings From the PERCH Study”, Clinical Infectious Diseases, 64:3 (2017), S337–S346 | DOI

[40] C. Viboud, P. Y. Boelle, S. Cauchemez, A. Lavenu, A. J. Valleron, A. Flahault, F. Carrat, “Risk factors of influenza transmission in households”, British Journal of General Practice, 54:506 (2004), 684–689 | DOI

[41] R. O. Bayram, H. Ozdemir, A. Emsen, H. T. Dagi, H. Artac, “Reference ranges for serum immunoglobulin (IgG, IgA, and IgM) and IgG subclass levels in healthy children”, Turkish Journal of Medical Sciences, 49:2 (2019), 497–505 | DOI

[42] A. Jafarzadeh, M. Sadeghi, G. A. Karam, R. Vazirinejad, “Salivary IgA and IgE levels in healthy subjects: relation to age and gender”, Brazilian Oral Research, 24:1 (2010), 21–27 | DOI

[43] R. L. Axtell, “Zipf distribution of U.S. firm sizes”, Science, 293:5536 (2001), 1818–1820 | DOI

[44] A. L. Barabasi, R. Albert, “Emergence of scaling in random networks”, Science, 286:5439 (1999), 509–512 | DOI | MR | Zbl

[45] H. Ali, N. Sadegh, M.-B. Behrouz, Q. Qiang, “ROLL: Fast In-Memory Generation of Gigantic Scale-free Networks”, Proceedings of the 2016 International Conference on Management of Data, SIGMOD'16, 2016, 1829–1842 | DOI

[46] A. Yu. Popova, E. B. Ezhlova, A. A. Melnikova, N. V. Frolova, V. N. Mikheev, A. B. Ryzhikov, T. N. Ilicheva, A. M. Domkina, I. V. Mikheeva, T. S. Saltykova, “Vliyanie ezhegodnoi immunizatsii naseleniya protiv grippa na zabolevaemost etoi infektsiei v Rossiiskoi Federatsii”, Epidemiologiya i vaktsinoprofilaktika, 15:1 (2016), 48–55 | DOI

[47] N. H. L. Leung, C. Xu, D. K. M. Ip, B. J. Cowling, “The fraction of influenza virus infections that are asymptomatic: a systematic review and meta-analysis”, Epidemiology, 26:6 (2015), 862–872 | DOI

[48] M. Galanti, R. Birger, M. Ud-Dean, I. Filip, H. Morita, D. Comito, S. Anthony, G. A. Freyer, S. Ibrahim, B. Lane, N. Matienzo, C. Ligon, R. Rabadan, A. Shittu, E. Tagne, J. Shaman, “Rates of asymptomatic respiratory virus infection across age groups”, Epidemiology and Infection, 147 (2019), e176, 6 pp. | DOI

[49] D. K. M. Ip, L. L. H. Lau, N. H. L. Leung, V. J. Fang, K. H. Chan, D. K. W. Chu, G. M. Leung, J. S. M. Peiris, T. M. Uyeki, B. J. Cowling, “Viral Shedding and Transmission Potential of Asymptomatic and Paucisymptomatic Influenza Virus Infections in the Community”, Clinical Infectious Diseases, 64:6 (2017), 736–742 | DOI

[50] L. P. Moreira, A. S.A. Watanabe, C. N. Camargo, T. B. Melchior, C. Granato, N. Bellei, “Respiratory syncytial virus evaluation among asymptomatic and symptomatic subjects in a university hospital in Sao Paulo, Brazil, in the period of 2009-2013”, Influenza and Other Respiratory Viruses, 12:3 (2018), 326–330 | DOI

[51] L. R. Elveback, J. P. Fox, E. Ackerman, A. Langworthy, M. Boyd, L. Gatewood, “An influenza simulation model for immunization studies”, American Journal of Epidemiology, 103:2 (1976), 152–165 | DOI

[52] T. K. Tsang, B. J. Cowling, V. J. Fang, K.-H. Chan, D. K. M. Ip, G. M. Leung, J. S. M. Peiris, S. Cauchemez, “Influenza A Virus Shedding and Infectivity in Households”, The Journal of Infectious Diseases, 212:9 (2015), 1420–14280 | DOI

[53] S. Y. D. Valle, J. M. Hyman, H. W. Hethcote, S. G. Eubank, “Mixing patterns between age groups in social networks”, Social Networks, 29:4 (2007), 539–554 | DOI

[54] R. Eccles, “An Explanation for the Seasonality of Acute Upper Respiratory Tract Viral Infections”, Acta Otolaryngol, 122:2 (2002), 183–191 | DOI

[55] R. Eccles, “An Explanation for the Seasonality of Acute Upper Respiratory Tract Viral Infections”, Acta Otolaryngol, 122:2 (2002), 183–191 | DOI