Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2020_15_2_a16, author = {N. Dash and S. Singh}, title = {Analytical study of {non-Newtonian} {Reiner--Rivlin} model for blood flow through tapered stenotic artery}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {295--312}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a16/} }
TY - JOUR AU - N. Dash AU - S. Singh TI - Analytical study of non-Newtonian Reiner--Rivlin model for blood flow through tapered stenotic artery JO - Matematičeskaâ biologiâ i bioinformatika PY - 2020 SP - 295 EP - 312 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a16/ LA - en ID - MBB_2020_15_2_a16 ER -
%0 Journal Article %A N. Dash %A S. Singh %T Analytical study of non-Newtonian Reiner--Rivlin model for blood flow through tapered stenotic artery %J Matematičeskaâ biologiâ i bioinformatika %D 2020 %P 295-312 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a16/ %G en %F MBB_2020_15_2_a16
N. Dash; S. Singh. Analytical study of non-Newtonian Reiner--Rivlin model for blood flow through tapered stenotic artery. Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020) no. 2, pp. 295-312. http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a16/
[1] S. S. Lim, T. Vos, “A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: A systematic analysis for the Global Burden of Disease Study 2010”, The Lancet, 380 (2012), 2224–2260 | DOI
[2] D. F. Young, “Fluid mechanics of arterial stenosis”, J. Biomech. Eng., 101 (1979), 157–175 | DOI
[3] D. F. Young, “Effect of a time-dependent stenosis on flow through a tube”, J. Manuf. Sci. Eng., 90 (1968), 248–254
[4] D. F. Young, F. Y. Tsai, “Flow characteristics in models of arterial stenosis I. Steady flow”, J. Biomech., 6 (1973), 395–402 | DOI
[5] N. Padmanabhan, “Mathematical model of arterial stenosis”, Med. Biol. Eng. Comput., 18 (1980), 281–286 | DOI | MR
[6] S. Sapna, “Analysis of non-Newtonian fluid flow in a stenosed artery”, Int. J. Phys. Sci., 4:11 (2009), 663–671
[7] G. R. Cokelet, E. W. Merrill, E. R. Gilliland, H. Singh, “The Rheology of Human Blood Measurement near and at Zero Shear Rate”, Trans. Soc. Rheol., 7 (1963), 303–317 | DOI
[8] H. L. Goldsmith, R. Skalak, “Hemodynamics In: Annual Review of Fluid Dynamics”, Annual Review Inc. Pato. Alto. Pub., 1975, 231–247
[9] N. P. Smith, A. J. Pullan, P. J. Hunter, “An Anatomically Based Mode for Transient Coronary Blood Flow in the Heart”, SIAM J. Appl. Math., 62:3 (2002), 990–1018 | DOI | MR | Zbl
[10] A. D. Anastasiou, A. S. Spyrogianni, K. C. Koskinas, G. D. Giannoglou, S. V. Paras, “Experimental investigation of the flow of a blood analogue fluid in a replica of a bifurcated small artery”, Medical Engineering Physics, 34 (2012), 211–218 | DOI
[11] F. Yilmaz, M. Y. Gundogdu, “A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions”, Korea-Australia Rheology Journal, 20:4 (2008), 197–211
[12] Kh. S. Mekheimer, M. A. El Kot, “Mathematical modelling of unsteady flow of a Sisko fluid through an anisotropically tapered elastic arteries with time-variant overlapping stenosis”, Applied Mathematical Modelling, 36 (2012), 5393–5407 | DOI | MR | Zbl
[13] N. Antonova, “On Some Mathematical Models in Hemorheology”, Biotechnology Biotechnological Equipment, 26:5 (2012), 3286–3291 | DOI
[14] B. Thomas, K. S. Suman, “Blood Flow in Human Arterial System-A Review”, Procedia Technology, 24 (2016), 339–346 | DOI
[15] V. K. Verma, “Study of Non-Newtonian Herschel-Bulkley Model through Stenosed Arteries”, International Journal of Mathematics and its Applications, 4 (2016), 105–111
[16] M. Jahangiri, M. Saghafian, M. R. Sadeghi, “Effect of six non-Newtonian viscosity models on hemodynamic parameters of pulsatile blood flow in stenosed artery”, Jl. of Computational and Applied Research in Mechanical Engineering, 29:7 (2018), 199–207
[17] C. Tu, M. Deville, “Pulsatile flow of non-Newtonian fluids through arterial stenoses”, Journal of Biomechanics, 29:7 (1996), 899–908 | DOI
[18] D. S. Sankar, Y. Yatim, “Comparative Analysis of Mathematical Models for Blood Flow in Tapered Constricted Arteries”, Abstract and Applied Analysis, 2012, 235960 | MR | Zbl
[19] K. Tesch, “Generalised Herschel model applied to blood flow modelling”, Task Quarterly, 16:3-4 (2012), 253–262
[20] V. K. Verma, “Study of Non-Newtonian Herschel-Bulkley Model through Stenosed Arteries”, International Journal of Mathematics and its application, 4:1-B (2016), 105–111
[21] N. Iida, “Influence of plasma layer on steady blood flow in micro vessels”, Japanese Journal of Applied Physics, 17 (1978), 203–214 | DOI
[22] P. Chaturani, V. Palanisamy, “Casson fluid model for pulsatile flow of blood under periodic body acceleration”, Biorheology, 27:5 (1990), 619–630 | DOI
[23] S. O'Callaghan, M. Walsh, T. McGloughlin, “Numerical modelling of Newtonian and non-Newtonian representation of blood in a distal end-to-side vascular bypass graft anastomosis”, Med. Eng. Phys., 28 (2006), 70–74 | DOI
[24] P. Hall, “Viscous flow in a pipe of slowly varying crosssection”, J. Fluid Mech., 64 (1974), 209–226 | DOI | Zbl
[25] G. Porenta, G. F. Young, T. R. Rogge, “A finite element model of blood flow in arteries including taper, branches and obstructions”, J. Biomech. Eng., 108 (1986), 161–167 | DOI
[26] H. W. Greensmith, R. S. Rivlin, “The Hydrodynamics of non-Newtonian fluids III. Theoretical stress effect in polymer solutions”, Phil. Trans. Roy. Soc. London, 245 (1953), 399 | MR
[27] Kh. S. Mekheimer, M. A. El Kot, “The micropolar fluid model for blood flow through a tapered artery with a stenosis”, Acta Mech. Sin., 24 (2008), 637–644 | DOI | MR | Zbl
[28] N. S. Akbar, S. Nadeem, Kh. S. Mekheimer, “Rheological properties of Reiner Rivlin fluid model for blood flow through tapered artery with stenosis”, Journal of the Egyptian Mathematical Society, 24 (2016), 138–142 | DOI | MR | Zbl
[29] S. L. Rathna, P. L. Bhatnagar, “Weissenberg and Merrington effects in non-newtonian fluids”, Jl. of Indian Institute of Science, 45:3 (1962), 57–82 | MR
[30] M. N.L. Narasimham, “On steady laminar flow of certain non-Newtonian liquids through an elastic tube”, Proceedings of Indian Academy of Sciences, 43:4 (1956), 237–246 | DOI | MR
[31] V. P. Srivastava, “Arterial blood flow through a nonsymmetrical stenosis with applications”, Jpn. J. Appl. Phys., 34 (1995), 6539–6545 | DOI