Analytical study of non-Newtonian Reiner--Rivlin model for blood flow through tapered stenotic artery
Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020) no. 2, pp. 295-312.

Voir la notice de l'article provenant de la source Math-Net.Ru

Stenosis, the abnormal narrowing of artery, significantly affects dynamics of blood flow due to increasing resistance to flow of blood. Velocity of blood flow, arterial pressure distribution, wall shear stress and resistance impedance factors are altered at different degree of stenosis. Prior knowledge of flow parameters such as velocity, flow rate, pressure drop in diseased artery is acknowledged to be crucial for preventive and curative medical intervention. The present paper develops the solution of Navier–Stokes equations for conservation of mass and momentum for axis-symmetric steady state case considering constitutive relation for Reiner–Rivlin fluid. Reiner–Rivlin constitutive relation renders the conservation equations non-linear partial differential equations. Few semi-analytical and numerical solutions are found to be reported in literature but no analytical solution. This has motivated the present research to obtain a closed-form solution considering Reiner–Rivlin constitutive relation. Solution yields an expression for axial velocity, which is utilized to obtain pressure gradient, resistance impedance and wall shear stress by considering volumetric flow rate as initial condition. The effect of viscosity, cross viscosity, flow rate, taper angle of artery and degree of stenosis on axial velocity, resistance impedance and wall shear stress are studied.
@article{MBB_2020_15_2_a16,
     author = {N. Dash and S. Singh},
     title = {Analytical study of {non-Newtonian} {Reiner--Rivlin} model for blood flow through tapered stenotic artery},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {295--312},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a16/}
}
TY  - JOUR
AU  - N. Dash
AU  - S. Singh
TI  - Analytical study of non-Newtonian Reiner--Rivlin model for blood flow through tapered stenotic artery
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2020
SP  - 295
EP  - 312
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a16/
LA  - en
ID  - MBB_2020_15_2_a16
ER  - 
%0 Journal Article
%A N. Dash
%A S. Singh
%T Analytical study of non-Newtonian Reiner--Rivlin model for blood flow through tapered stenotic artery
%J Matematičeskaâ biologiâ i bioinformatika
%D 2020
%P 295-312
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a16/
%G en
%F MBB_2020_15_2_a16
N. Dash; S. Singh. Analytical study of non-Newtonian Reiner--Rivlin model for blood flow through tapered stenotic artery. Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020) no. 2, pp. 295-312. http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a16/

[1] S. S. Lim, T. Vos, “A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: A systematic analysis for the Global Burden of Disease Study 2010”, The Lancet, 380 (2012), 2224–2260 | DOI

[2] D. F. Young, “Fluid mechanics of arterial stenosis”, J. Biomech. Eng., 101 (1979), 157–175 | DOI

[3] D. F. Young, “Effect of a time-dependent stenosis on flow through a tube”, J. Manuf. Sci. Eng., 90 (1968), 248–254

[4] D. F. Young, F. Y. Tsai, “Flow characteristics in models of arterial stenosis I. Steady flow”, J. Biomech., 6 (1973), 395–402 | DOI

[5] N. Padmanabhan, “Mathematical model of arterial stenosis”, Med. Biol. Eng. Comput., 18 (1980), 281–286 | DOI | MR

[6] S. Sapna, “Analysis of non-Newtonian fluid flow in a stenosed artery”, Int. J. Phys. Sci., 4:11 (2009), 663–671

[7] G. R. Cokelet, E. W. Merrill, E. R. Gilliland, H. Singh, “The Rheology of Human Blood Measurement near and at Zero Shear Rate”, Trans. Soc. Rheol., 7 (1963), 303–317 | DOI

[8] H. L. Goldsmith, R. Skalak, “Hemodynamics In: Annual Review of Fluid Dynamics”, Annual Review Inc. Pato. Alto. Pub., 1975, 231–247

[9] N. P. Smith, A. J. Pullan, P. J. Hunter, “An Anatomically Based Mode for Transient Coronary Blood Flow in the Heart”, SIAM J. Appl. Math., 62:3 (2002), 990–1018 | DOI | MR | Zbl

[10] A. D. Anastasiou, A. S. Spyrogianni, K. C. Koskinas, G. D. Giannoglou, S. V. Paras, “Experimental investigation of the flow of a blood analogue fluid in a replica of a bifurcated small artery”, Medical Engineering Physics, 34 (2012), 211–218 | DOI

[11] F. Yilmaz, M. Y. Gundogdu, “A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions”, Korea-Australia Rheology Journal, 20:4 (2008), 197–211

[12] Kh. S. Mekheimer, M. A. El Kot, “Mathematical modelling of unsteady flow of a Sisko fluid through an anisotropically tapered elastic arteries with time-variant overlapping stenosis”, Applied Mathematical Modelling, 36 (2012), 5393–5407 | DOI | MR | Zbl

[13] N. Antonova, “On Some Mathematical Models in Hemorheology”, Biotechnology Biotechnological Equipment, 26:5 (2012), 3286–3291 | DOI

[14] B. Thomas, K. S. Suman, “Blood Flow in Human Arterial System-A Review”, Procedia Technology, 24 (2016), 339–346 | DOI

[15] V. K. Verma, “Study of Non-Newtonian Herschel-Bulkley Model through Stenosed Arteries”, International Journal of Mathematics and its Applications, 4 (2016), 105–111

[16] M. Jahangiri, M. Saghafian, M. R. Sadeghi, “Effect of six non-Newtonian viscosity models on hemodynamic parameters of pulsatile blood flow in stenosed artery”, Jl. of Computational and Applied Research in Mechanical Engineering, 29:7 (2018), 199–207

[17] C. Tu, M. Deville, “Pulsatile flow of non-Newtonian fluids through arterial stenoses”, Journal of Biomechanics, 29:7 (1996), 899–908 | DOI

[18] D. S. Sankar, Y. Yatim, “Comparative Analysis of Mathematical Models for Blood Flow in Tapered Constricted Arteries”, Abstract and Applied Analysis, 2012, 235960 | MR | Zbl

[19] K. Tesch, “Generalised Herschel model applied to blood flow modelling”, Task Quarterly, 16:3-4 (2012), 253–262

[20] V. K. Verma, “Study of Non-Newtonian Herschel-Bulkley Model through Stenosed Arteries”, International Journal of Mathematics and its application, 4:1-B (2016), 105–111

[21] N. Iida, “Influence of plasma layer on steady blood flow in micro vessels”, Japanese Journal of Applied Physics, 17 (1978), 203–214 | DOI

[22] P. Chaturani, V. Palanisamy, “Casson fluid model for pulsatile flow of blood under periodic body acceleration”, Biorheology, 27:5 (1990), 619–630 | DOI

[23] S. O'Callaghan, M. Walsh, T. McGloughlin, “Numerical modelling of Newtonian and non-Newtonian representation of blood in a distal end-to-side vascular bypass graft anastomosis”, Med. Eng. Phys., 28 (2006), 70–74 | DOI

[24] P. Hall, “Viscous flow in a pipe of slowly varying crosssection”, J. Fluid Mech., 64 (1974), 209–226 | DOI | Zbl

[25] G. Porenta, G. F. Young, T. R. Rogge, “A finite element model of blood flow in arteries including taper, branches and obstructions”, J. Biomech. Eng., 108 (1986), 161–167 | DOI

[26] H. W. Greensmith, R. S. Rivlin, “The Hydrodynamics of non-Newtonian fluids III. Theoretical stress effect in polymer solutions”, Phil. Trans. Roy. Soc. London, 245 (1953), 399 | MR

[27] Kh. S. Mekheimer, M. A. El Kot, “The micropolar fluid model for blood flow through a tapered artery with a stenosis”, Acta Mech. Sin., 24 (2008), 637–644 | DOI | MR | Zbl

[28] N. S. Akbar, S. Nadeem, Kh. S. Mekheimer, “Rheological properties of Reiner Rivlin fluid model for blood flow through tapered artery with stenosis”, Journal of the Egyptian Mathematical Society, 24 (2016), 138–142 | DOI | MR | Zbl

[29] S. L. Rathna, P. L. Bhatnagar, “Weissenberg and Merrington effects in non-newtonian fluids”, Jl. of Indian Institute of Science, 45:3 (1962), 57–82 | MR

[30] M. N.L. Narasimham, “On steady laminar flow of certain non-Newtonian liquids through an elastic tube”, Proceedings of Indian Academy of Sciences, 43:4 (1956), 237–246 | DOI | MR

[31] V. P. Srivastava, “Arterial blood flow through a nonsymmetrical stenosis with applications”, Jpn. J. Appl. Phys., 34 (1995), 6539–6545 | DOI