Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2020_15_2_a15, author = {S. Saha and G. Samanta}, title = {Modeling of insect-pathogen dynamics with biological control}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {268--294}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a15/} }
S. Saha; G. Samanta. Modeling of insect-pathogen dynamics with biological control. Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020) no. 2, pp. 268-294. http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a15/
[1] J. C. Van Lenteren, J. Woets, “Biological and integrated pest control in greenhouses”, Ann. Rev. Entomol., 33 (1988), 239–250 | DOI
[2] J. C. Van Lenteren, “Integrated pest management in protected crops”, Integrated pest management, ed. D. Dent, Chapman Hall, London, 1995, 311–343
[3] H. D. Burges, Microbial Control of Pests and Plant Diseases 1970–1980, Academic Press, London–New York, 1981
[4] J. R. Glare, T. A. Jackson, Use of Pathogens in Scarab Pest Management, Intercept Ltd, Andover, Hampshire, UK, 1992
[5] M. E. Hochberg, “The potential role of pathogens in biological control”, Nature, 337 (1989), 262–265 | DOI
[6] R. M. Anderson, R. M. May, “Infectious disease and population cycles of forest insect”, Science, 210 (1980), 658–661 | DOI
[7] R. M. Anderson, R. M. May, “The population dynamics of microparasities and their invertebrate hosts”, Philos. Trans. R. Soc. Lond. Ser. B, 291 (1980), 451–524 | DOI
[8] C. J. Briggs, H. C. J. Godfray, “The dynamics of insect-pathogen interactions in stage-structured populations”, Am. Nat., 145 (1995), 855–887 | DOI
[9] G. C. Brown, “Stability in an insect-pathogen mode incorporating age-dependent immunity and seasonal host reproduction”, Bull. Math. Biol., 46 (1984), 139–153 | DOI | Zbl
[10] R. G. Browers, M. Begon, D. E. Hodgkinson, “Host-pathogen population cycles in forest insect? Lwssons from simple models reconsidered”, Oikos, 67 (1993), 529–538 | DOI
[11] J. H. Myers, Can a general hypothesis explain population cycles of forest Lepidoptera?, Adv. Ecol. Res., 18 (1988), 179–242 | DOI
[12] M. Begon, R. G. Bowers, N. Kadianakis, D. E. Hodgkinson, “Disease and community structure: the importance of host self-regulation in a host-pathogen model”, Am. Nat., 139 (1992), 1131–1150 | DOI
[13] M. Moerbeek, F. Van Den Bosch, “Insect-pathogen dynamics: stage-specific susceptibility and insect density dependence”, Math. Biosci., 141 (1997), 115–148 | DOI | Zbl
[14] R. D. Holt, J. Pickering, “Infectious disease and species coexistence: a model in Lotka-Volterra form”, Am. Nat., 126 (1985), 196–211 | DOI | MR
[15] G. Dwyer, “Density dependence and spatial structure in the dynamics of insect pathogens”, Am. Nat., 143 (1994), 533–562 | DOI
[16] R. G. Browers, M. Begon, “A host-pathogen model with free living infective stages, applicable to microbial pest control”, J. Theor. Biol., 148 (1991), 305–329 | DOI
[17] M. Begon, R. G. Bowers, “Host-pathogen models and microbial pest control: the effect of host self-regulation”, J. Theor. Biol., 169 (1995), 275–287 | DOI
[18] S. Sharma, G. P. Samanta, “A ratio-dependent predator-prey model with Allee effect and disease in prey”, Journal of Applied Mathematics and Computing, 47:1-2 (2014), 345–364 | DOI | MR
[19] K. P. Hadeler, H. I. Freedman, “Predator-prey population with parasitic infection”, J. Math. Biol., 27 (1989), 609–631 | DOI | MR | Zbl
[20] H. I. Freedman, “A model of predator-prey dynamics as modified by the action of parasite”, Math. Biosci., 99 (1990), 143–155 | DOI | MR | Zbl
[21] E. Beltrami, T. D. Carroll, “Modelling the role of viral disease in recurrent phytoplankton blooms”, J. Math. Biol., 32 (1994), 857–863 | DOI | Zbl
[22] E. Venturino, “The effects of disease on competing species”, Math. Biosci., 174 (2001), 111–131 | DOI | MR | Zbl
[23] E. Venturino, “The influence of disease on Lotka-Volterra systems”, Rockymount. J. Math., 24 (1994), 389–402 | MR
[24] Y. Xiao, L. Chen, “Modelling and analysis of a predator-prey model with disease in the prey”, Math. Biosci., 171 (2001), 59–82 | DOI | MR | Zbl
[25] Y. Xiao, L. Chen, “Analysis of a three species eco-epidemiological model”, J. Math. Anal. Appl., 171 (2001), 59–82 | MR | Zbl
[26] A. Mondal, A. K. Pal, G. P. Samanta, “On the dynamics of evolutionary Leslie-Gower predator-prey eco-epidemiological model with disease in predator”, Ecological Genetics and Genomics, 10 (2019), 100034 | DOI | MR
[27] J. K. Hale, Theory of functional Differential Equations, Springer-Verlag, Heidelberg, 1977 | MR | Zbl
[28] S. Saha, G. P. Samanta, “Local dynamics of a predator-prey community in a moderate period of time”, Energy, Ecology and Environment, 5:1 (2020), 47–60 | DOI
[29] H. I. Freedman, S. Ruan, “Uniform persistence in functional differential equations”, J. Differ. Equ., 115 (1995), 173–192 | DOI | MR | Zbl
[30] L. Perko, Differential equations and dynamical systems, Springer, Berlin, 2013 | MR
[31] J. D. Murray, Mathematical biology, Springer-Verlag, New York, 1993 | MR | Zbl
[32] S. Saha, G. P. Samanta, “Analysis of a predator-prey model with herd behaviour and disease in prey incorporating prey refuge”, International Journal of Biomathematics, 12:1 (2019), 1950007 | DOI | MR | Zbl
[33] S. Saha, A. Maiti, G. P. Samanta, “A Michaelis-Menten Predator-Prey Model with Strong Allee Effect and Disease in Prey Incorporating Prey Refuge”, International Journal of Bifurcation and Chaos, 28:6 (2018), 1850073 | DOI | MR | Zbl
[34] J. LaSalle, The stability of dynamical systems, Regional conference series in applied mathematics, SIAM, Philadelphia, 1976 | MR | Zbl
[35] J. M. Cushing, B. Dennis, R. A. Desharnais, R. F. Costantino, “Moving toward an unstable equilibrium: saddle nodes in population systems”, J. Anim. Ecol., 67 (1998), 298–306 | DOI
[36] A. Hastings, “Transient dynamics and persistence of ecological systems”, Ecol. Lett., 4 (2001), 215–220 | DOI
[37] A. Hastings, Transients: the key to long-term ecological understanding?, Trends in Ecology and Evolution, 19 (2004), 39–45 | DOI
[38] Y. C. Lai, R. L. Winslow, “Geometric-properties of the chaotic saddle responsible for supertransients in spatiotemporal chaotic systems”, Phys. Rev. Lett., 74 (1995), 5208–5211 | DOI