Modeling of insect-pathogen dynamics with biological control
Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020) no. 2, pp. 268-294.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, a model is proposed to analyze the effect of wild plant species on biologically-based technologies for pest control. It is assumed that the pest species have a second food source (wild host plants) except crops. Analytical results prove that the model is well-posed as the system variables are non-negative and uniformly bounded. The permanence of the system has been verified. Equilibrium points and corresponding stability analysis have also been performed. Numerical figures have supported the fact that the interior steady state if it exists, remains stable for any transmission rate. Henceforth biological control has a stabilizing effect. Furthermore, the results prove that biological control is beneficial not only for wild plants but for crops too.
@article{MBB_2020_15_2_a15,
     author = {S. Saha and G. Samanta},
     title = {Modeling of insect-pathogen dynamics with biological control},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {268--294},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a15/}
}
TY  - JOUR
AU  - S. Saha
AU  - G. Samanta
TI  - Modeling of insect-pathogen dynamics with biological control
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2020
SP  - 268
EP  - 294
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a15/
LA  - en
ID  - MBB_2020_15_2_a15
ER  - 
%0 Journal Article
%A S. Saha
%A G. Samanta
%T Modeling of insect-pathogen dynamics with biological control
%J Matematičeskaâ biologiâ i bioinformatika
%D 2020
%P 268-294
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a15/
%G en
%F MBB_2020_15_2_a15
S. Saha; G. Samanta. Modeling of insect-pathogen dynamics with biological control. Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020) no. 2, pp. 268-294. http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a15/

[1] J. C. Van Lenteren, J. Woets, “Biological and integrated pest control in greenhouses”, Ann. Rev. Entomol., 33 (1988), 239–250 | DOI

[2] J. C. Van Lenteren, “Integrated pest management in protected crops”, Integrated pest management, ed. D. Dent, Chapman Hall, London, 1995, 311–343

[3] H. D. Burges, Microbial Control of Pests and Plant Diseases 1970–1980, Academic Press, London–New York, 1981

[4] J. R. Glare, T. A. Jackson, Use of Pathogens in Scarab Pest Management, Intercept Ltd, Andover, Hampshire, UK, 1992

[5] M. E. Hochberg, “The potential role of pathogens in biological control”, Nature, 337 (1989), 262–265 | DOI

[6] R. M. Anderson, R. M. May, “Infectious disease and population cycles of forest insect”, Science, 210 (1980), 658–661 | DOI

[7] R. M. Anderson, R. M. May, “The population dynamics of microparasities and their invertebrate hosts”, Philos. Trans. R. Soc. Lond. Ser. B, 291 (1980), 451–524 | DOI

[8] C. J. Briggs, H. C. J. Godfray, “The dynamics of insect-pathogen interactions in stage-structured populations”, Am. Nat., 145 (1995), 855–887 | DOI

[9] G. C. Brown, “Stability in an insect-pathogen mode incorporating age-dependent immunity and seasonal host reproduction”, Bull. Math. Biol., 46 (1984), 139–153 | DOI | Zbl

[10] R. G. Browers, M. Begon, D. E. Hodgkinson, “Host-pathogen population cycles in forest insect? Lwssons from simple models reconsidered”, Oikos, 67 (1993), 529–538 | DOI

[11] J. H. Myers, Can a general hypothesis explain population cycles of forest Lepidoptera?, Adv. Ecol. Res., 18 (1988), 179–242 | DOI

[12] M. Begon, R. G. Bowers, N. Kadianakis, D. E. Hodgkinson, “Disease and community structure: the importance of host self-regulation in a host-pathogen model”, Am. Nat., 139 (1992), 1131–1150 | DOI

[13] M. Moerbeek, F. Van Den Bosch, “Insect-pathogen dynamics: stage-specific susceptibility and insect density dependence”, Math. Biosci., 141 (1997), 115–148 | DOI | Zbl

[14] R. D. Holt, J. Pickering, “Infectious disease and species coexistence: a model in Lotka-Volterra form”, Am. Nat., 126 (1985), 196–211 | DOI | MR

[15] G. Dwyer, “Density dependence and spatial structure in the dynamics of insect pathogens”, Am. Nat., 143 (1994), 533–562 | DOI

[16] R. G. Browers, M. Begon, “A host-pathogen model with free living infective stages, applicable to microbial pest control”, J. Theor. Biol., 148 (1991), 305–329 | DOI

[17] M. Begon, R. G. Bowers, “Host-pathogen models and microbial pest control: the effect of host self-regulation”, J. Theor. Biol., 169 (1995), 275–287 | DOI

[18] S. Sharma, G. P. Samanta, “A ratio-dependent predator-prey model with Allee effect and disease in prey”, Journal of Applied Mathematics and Computing, 47:1-2 (2014), 345–364 | DOI | MR

[19] K. P. Hadeler, H. I. Freedman, “Predator-prey population with parasitic infection”, J. Math. Biol., 27 (1989), 609–631 | DOI | MR | Zbl

[20] H. I. Freedman, “A model of predator-prey dynamics as modified by the action of parasite”, Math. Biosci., 99 (1990), 143–155 | DOI | MR | Zbl

[21] E. Beltrami, T. D. Carroll, “Modelling the role of viral disease in recurrent phytoplankton blooms”, J. Math. Biol., 32 (1994), 857–863 | DOI | Zbl

[22] E. Venturino, “The effects of disease on competing species”, Math. Biosci., 174 (2001), 111–131 | DOI | MR | Zbl

[23] E. Venturino, “The influence of disease on Lotka-Volterra systems”, Rockymount. J. Math., 24 (1994), 389–402 | MR

[24] Y. Xiao, L. Chen, “Modelling and analysis of a predator-prey model with disease in the prey”, Math. Biosci., 171 (2001), 59–82 | DOI | MR | Zbl

[25] Y. Xiao, L. Chen, “Analysis of a three species eco-epidemiological model”, J. Math. Anal. Appl., 171 (2001), 59–82 | MR | Zbl

[26] A. Mondal, A. K. Pal, G. P. Samanta, “On the dynamics of evolutionary Leslie-Gower predator-prey eco-epidemiological model with disease in predator”, Ecological Genetics and Genomics, 10 (2019), 100034 | DOI | MR

[27] J. K. Hale, Theory of functional Differential Equations, Springer-Verlag, Heidelberg, 1977 | MR | Zbl

[28] S. Saha, G. P. Samanta, “Local dynamics of a predator-prey community in a moderate period of time”, Energy, Ecology and Environment, 5:1 (2020), 47–60 | DOI

[29] H. I. Freedman, S. Ruan, “Uniform persistence in functional differential equations”, J. Differ. Equ., 115 (1995), 173–192 | DOI | MR | Zbl

[30] L. Perko, Differential equations and dynamical systems, Springer, Berlin, 2013 | MR

[31] J. D. Murray, Mathematical biology, Springer-Verlag, New York, 1993 | MR | Zbl

[32] S. Saha, G. P. Samanta, “Analysis of a predator-prey model with herd behaviour and disease in prey incorporating prey refuge”, International Journal of Biomathematics, 12:1 (2019), 1950007 | DOI | MR | Zbl

[33] S. Saha, A. Maiti, G. P. Samanta, “A Michaelis-Menten Predator-Prey Model with Strong Allee Effect and Disease in Prey Incorporating Prey Refuge”, International Journal of Bifurcation and Chaos, 28:6 (2018), 1850073 | DOI | MR | Zbl

[34] J. LaSalle, The stability of dynamical systems, Regional conference series in applied mathematics, SIAM, Philadelphia, 1976 | MR | Zbl

[35] J. M. Cushing, B. Dennis, R. A. Desharnais, R. F. Costantino, “Moving toward an unstable equilibrium: saddle nodes in population systems”, J. Anim. Ecol., 67 (1998), 298–306 | DOI

[36] A. Hastings, “Transient dynamics and persistence of ecological systems”, Ecol. Lett., 4 (2001), 215–220 | DOI

[37] A. Hastings, Transients: the key to long-term ecological understanding?, Trends in Ecology and Evolution, 19 (2004), 39–45 | DOI

[38] Y. C. Lai, R. L. Winslow, “Geometric-properties of the chaotic saddle responsible for supertransients in spatiotemporal chaotic systems”, Phys. Rev. Lett., 74 (1995), 5208–5211 | DOI