Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2020_15_2_a14, author = {O. B. Neumark and Yu. V. Bayandin and Yu. A. Beloglazova and O. N. Gagarskich and V. V. Grishko and A. S. Nikityuk and A. O. Voronina}, title = {DNA transformation, cell epigenetic landscape and open complex dynamics in cancer development}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {251--267}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a14/} }
TY - JOUR AU - O. B. Neumark AU - Yu. V. Bayandin AU - Yu. A. Beloglazova AU - O. N. Gagarskich AU - V. V. Grishko AU - A. S. Nikityuk AU - A. O. Voronina TI - DNA transformation, cell epigenetic landscape and open complex dynamics in cancer development JO - Matematičeskaâ biologiâ i bioinformatika PY - 2020 SP - 251 EP - 267 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a14/ LA - en ID - MBB_2020_15_2_a14 ER -
%0 Journal Article %A O. B. Neumark %A Yu. V. Bayandin %A Yu. A. Beloglazova %A O. N. Gagarskich %A V. V. Grishko %A A. S. Nikityuk %A A. O. Voronina %T DNA transformation, cell epigenetic landscape and open complex dynamics in cancer development %J Matematičeskaâ biologiâ i bioinformatika %D 2020 %P 251-267 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a14/ %G en %F MBB_2020_15_2_a14
O. B. Neumark; Yu. V. Bayandin; Yu. A. Beloglazova; O. N. Gagarskich; V. V. Grishko; A. S. Nikityuk; A. O. Voronina. DNA transformation, cell epigenetic landscape and open complex dynamics in cancer development. Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020) no. 2, pp. 251-267. http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a14/
[1] B. D. Hoffman, J. C. Crocker, “Cell mechanics: dissecting the physical responses of cells to force”, Annual Review of Biomedical Engineering, 11 (2009), 259–288 | DOI
[2] M. L. Gardel, K. E. Kasza, C. P. Brangwynne, J. Liu, D. A. Weitz, “Mechanical response of cytoskeletal networks”, Methods in Cell Biology, 89 (2008), 487–519 | DOI
[3] F. Huber, J. Schnauß, S. Rönicke, P. Rauch, K. Müller, C. Fütterer, J. Käs, “Emergent complexity of the cytoskeleton: from single filaments to tissue”, Advances in Physics, 62:1 (2013), 1–112 | DOI
[4] D. A. Fletcher, R. D. Mullins, “Cell mechanics, the cytoskeleton”, Nature, 463:7280 (2010), 485–492 | DOI
[5] S. A. Kauffman, “Metabolic stability and epigenesis in randomly constructed genetic nets”, Journal of Theoretical Biology, 22:3 (1969), 437–467 | DOI | MR
[6] S. Huang, S. A. Kauffman, Complex gene regulatory networks-from structure to biological observables: cell fate determination, 2009, 1180–1213
[7] S. Huang, “Non-genetic heterogeneity of cells in development: more than just noise”, Development, 136:23 (2009), 3853–3862 | DOI
[8] J. Wang, L. Xu, E. Wang, S. Huang, “The potential landscape of genetic circuits imposes the arrow of time in stem cell differentiation”, Biophysical Journal, 99:1 (2010), 29–39 | DOI
[9] S. Huang, G. Eichler, Y. Bar-Yam, D. E. Ingber, “Cell fates as high-dimensional attractor states of a complex gene regulatory network”, Physical Review Letters, 94:12 (2005), 128701 | DOI
[10] S. Huang, The molecular and mathematical basis of Waddington's epigenetic landscape: A framework for post-Darwinian biology?, Bioessays, 34:2 (2012), 149–157 | DOI
[11] L. Fumarola, C. Urani, G. F. Crosta, “Quantitative kinetics of damage and recovery of cytoskeletal structure by means of image analysis”, Toxicology in vitro, 19:7 (2005), 935–941 | DOI
[12] D. E. Ingber, “Mechanical control of tissue growth: function follows form”, Proceedings of the National Academy of Sciences, 102:33 (2005), 11571–11572 | DOI
[13] D. E. Ingber, “Tensegrity-based mechanosensing from macro to micro”, Progress in Biophysics and Molecular Biology, 97:2-3 (2008), 163–179 | DOI
[14] N. Bonakdar, R. Gerum, M. Kuhn, M. Spörrer, A. Lippert, W. Schneider, B. Fabry, “Mechanical plasticity of cells”, Nature Materials, 15:10 (2016), 1090–1094 | DOI
[15] O. B. Naimark, “Defect-induced transitions as mechanisms of plasticity and failure in multifield continua”, Advances in Multifield Theories for Continua with Substructure, Birkhäuser, Boston, MA, 2004, 75–114 | DOI | MR | Zbl
[16] O. B. Naimark, “Structural-scaling transitions and localized distortion modes in the DNA double helix”, Physical Mesomechanics, 1:10 (2007), 33–45 | DOI
[17] M. Bizzarri, A. Palombo, A. Cucina, “Theoretical aspects of systems biology”, Progress in Biophysics and Molecular Biology, 112:1-2 (2013), 33–43 | DOI
[18] O. Naimark, “Nonlinear dynamics and damage induced properties of soft matter with application in oncology”, AIP Conference Proceedings, 1882:1 (2017), 020052 | DOI
[19] M. Peyrard, “Nonlinear dynamics and statistical physics of DNA”, Nonlinearity, 17:2 (2004), R1 | DOI | MR | Zbl
[20] M. Peyrard, A. R. Bishop, “Statistical mechanics of a nonlinear model for DNA denaturation”, Physical Review Letters, 62:23 (1989), 2755 | DOI
[21] A. S. Shigaev, O. A. Ponomarev, V. D. Lakhno, “Theoretical and Experimental Investigations of DNA Open States”, Math. Biol. Bioinf., 8:2 (2013), 553–664 | DOI
[22] R. M. Wartell, A. S. Benight, “Thermal denaturation of DNA molecules: a comparison of theory with experiment”, Physics Reports, 126:2 (1985), 67–107 | DOI
[23] I. V. Likhachev, V. D. Lakhno, “The direct investigation of DNA denaturation in Peyrard-Bishop-Dauxois model by molecular dynamics method”, Chemical Physics Letters, 727 (2019), 55–58 | DOI | MR
[24] I. V. Likhachev, V. D. Lakhno, “Investigation of DNA denaturation in Peyrard-Bishop-Dauxois model by molecular dynamics method”, The European Physical Journal B, 92:11 (2019), 253 | DOI
[25] A. S. Nikitiuk, E. A. Korznikova, S. V. Dmitriev, O. B. Naimark, “DNA breathers, cell dynamics”, Mathematical Biology and Bioinformatics, 14:1 (2019), 137–149 | DOI
[26] A. S. Nikitiuk, E. A. Korznikova, S. V. Dmitriev, O. B. Naimark, “Nonlinear dynamics of DNA with topological constraints”, Letters on Materials, 8:4 (2018), 489–493 | DOI
[27] M. Tsuchiya, A. Giuliani, K. Yoshikawa, “Single-Cell Reprogramming in Mouse Embryo Development through a Critical Transition State”, Entropy, 19:11 (2017), 584 | DOI
[28] C. R. Woese, “A new biology for a new century”, Microbiology and Molecular Biology Reviews, 68:2 (2004), 173–186 | DOI
[29] M. Leontovich, Introduction to Thermodynamics. Statistical Physics, High School, M., 1983, 416 pp.
[30] N. Goldenfeld, C. Woese, “Biology's next revolution”, Nature, 445:7126 (2007), 369–369 | DOI
[31] N. Goldenfeld, C. Woese, “Life is physics: evolution as a collective phenomenon far from equilibrium”, Annu. Rev. Condens. Matter Phys., 2:1 (2011), 375–399 | DOI
[32] C. H. Waddington, “Canalization of development and the inheritance of acquired characters”, Nature, 150:3811 (1942), 563–565 | DOI
[33] C. H. Waddington, The strategy of the genes, Routledge, 2014
[34] A. D. Goldberg, C. D. Allis, E. Bernstein, “Epigenetics: a landscape takes shape”, Cell, 128:4 (2007), 635–638 | DOI
[35] M. Tsuchiya, K. Selvarajoo, V. Piras, M. Tomita, A. Giuliani, “Local and global responses in complex gene regulation networks”, Physica A: Statistical Mechanics and its Applications, 388:8 (2009), 1738–1746 | DOI
[36] M. Tsuchiya, M. Hashimoto, Y. Takenaka, I. N. Motoike, K. Yoshikawa, “Global genetic response in a cancer cell: Self-organized coherent expression dynamics”, PLoS One, 9:5 (2014)
[37] M. Aldana, E. Balleza, S. Kauffman, O. Resendiz, “Robustness and evolvability in genetic regulatory networks”, Journal of Theoretical Biology, 245:3 (2007), 433–448 | DOI | MR | Zbl
[38] S. P. Kurdyumov, “Evolution and self-organization laws in complex systems”, Advances in Theoretical Physics, 1990, 134 | MR
[39] O. B. Naimark, “Structural-scale transitions in solids with defects and symmetry aspects of field theory”, Physical Mesomechanics, 13:5-6 (2010), 306–317 | DOI
[40] A. Damasco, A. Giuliani, “A resonance based model of biological evolution”, Physica A: Statistical Mechanics and its Applications, 471 (2017), 750–756 | DOI
[41] O. Naimark, “Mesoscopic cell dynamics in different environment and problem of cancer”, AIP Conference Proceedings, 2167:1 (2019), 020237 | DOI
[42] G. Longo, M. Montévil, “From physics to biology by extending criticality and symmetry breakings”, Perspectives on Organisms, Springer, Berlin–Heidelberg, 2014, 161–185 | DOI
[43] G. Longo, M. R. Montévil, A. Pocheville, “From bottom-up approaches to levels of organization and extended critical transitions”, Frontiers in Physiology, 3 (2012), 232
[44] S. Huang, D. E. Ingber, “Shape-dependent control of cell growth, differentiation, and apoptosis: switching between attractors in cell regulatory networks”, Experimental Cell Research, 261:1 (2000), 91–103 | DOI | MR
[45] S. Huang, D. E. Ingber, “A non-genetic basis for cancer progression and metastasis: self-organizing attractors in cell regulatory networks”, Breast Disease, 26:1 (2007), 27–54 | DOI
[46] C. Auffray, L. Nottale, “Scale relativity theory and integrative systems biology: 1: founding principles and scale laws”, Progress in Biophysics and Molecular Biology, 97:1 (2008), 79–114 | DOI
[47] C. Auffray, S. Imbeaud, M. Roux-Rouquié, L. Hood, “Self-organized living systems: conjunction of a stable organization with chaotic fluctuations in biological space-time”, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 361:1807 (2003), 1125–1139 | DOI | MR
[48] F. Bailly, G. Longo, “Extended critical situations: the physical singularity of life phenomena”, Journal of Biological Systems, 16:02 (2008), 309–336 | DOI | Zbl
[49] F. Bailly, G. Longo, “Biological organization and anti-entropy”, Journal of Biological Systems, 17:01 (2009), 63–96 | DOI | MR | Zbl
[50] L. D. Landau, “On the theory of phase transitions”, Zh. Eksp. Teor. Fiz., 11 (1937), 19
[51] V. L. Ginzburg, L. D. Landau, “On the theory of superconductors”, Zh. Eksp. Teor. Fiz., 20 (1950), 1064–1082
[52] A. M. Weinberg, “On the Relation Between Information and Energy Systems”, A Family of Maxwell's Demons. Interdisciplinary Science Reviews, 7:1 (1982), 47–52 | DOI
[53] M. Tsuchiya, A. Giuliani, M. Hashimoto, J. Erenpreisa, K. Yoshikawa, “Emergent Self-Organized Criticality in gene expression dynamics: Temporal development of global phase transition revealed in a cancer cell line”, PLoS One, 10:6 (2015) | DOI
[54] M. Tsuchyia, S. T. Wong, Z. X. Yeo, A. Colosimo, M. C. Palumbo, L. Farina, K. Selvarajoo, “Gene expression waves: cell cycle independent collective dynamics in cultured cells”, The FEBS Journal, 274:11 (2007), 2878–2886 | DOI
[55] O. B. Naimark, “Collective properties of defect ensembles and some nonlinear problems of plasticity and fracture”, Physical Mesomechanics, 6:4 (2003), 39–64 | MR
[56] O. B. Naimark, A. S. Nikitiuk, M. O. Baudement, T. Forné, A. Lesne, “The physics of cancer: The role of epigenetics and chromosome conformation in cancer progression”, AIP Conference Proceedings, 1760:1 (2016), 020051 | DOI
[57] G. I. Barenblatt, Y. B. Zel'dovich, “Intermediate asymptotics in mathematical physics”, Russian Math. Surveys, 26:2 (1971), 45–61 | DOI | MR
[58] Barenblatt G. I. Similarity, Self-Similarity, Intermediate Asymptotics, Springer US, NY, 1979, 218 pp. | MR
[59] O. B. Naimark, “Some regularities of scaling in plasticity, fracture, and turbulence”, Physical Mesomechanics, 19:3 (2016), 307–318 | DOI
[60] O. B. Naimark, S. V. Uvarov, M. M. Davydova, I. A. Bannikova, “Multiscale statistical laws of dynamic fragmentation”, Physical Mesomechanics, 20:1 (2017), 90–101 | DOI
[61] P. S. Ignatyev, K. V. Indukaev, P. A. Osipov, I. K. Sergeev, “Laser interference microscopy for nanobiotechnologies”, Biomedical Engineering, 47:1 (2013), 32–35 | DOI | MR
[62] O. Naimark, “Nonlinear dynamics and damage induced properties of soft matter with application in oncology”, AIP Conference Proceedings, 1882:1 (2017), 020052 | DOI
[63] O. Naimark, “Mesoscopic cell dynamics in different environment and problem of cancer”, AIP Conference Proceedings, 2167:1 (2019), 020237 | DOI
[64] O. B. Naimark, V. V. Grishko, Yu. V. Bayandin, A. S. Nikityuk, “Mechanobiological study of the dynamics and morphology of cell structures by laser microscopy and applications in oncology”, Perm Federal Research Center Journal, 1 (2020), 70–87
[65] E. Gerasimova, B. Audit, S. G. Roux, A. Khalil, F. Argoul, O. Naimark, A. Arneodo, “Multifractal analysis of dynamic infrared imaging of breast cancer”, Europhysics Letters, 104:6 (2014), 68001 | DOI
[66] E. Gerasimova, B. Audit, S. G. Roux, A. Khalil, O. Gileva, F. Argoul, O. Naimark, A. Arneodo, “Wavelet-based multifractal analysis of dynamic infrared thermograms to assist in early breast cancer diagnosis”, Frontiers in Physiology, 5 (2014), 176 | DOI
[67] Gerasimova-Chechkina E., Toner B., Marin Z., Audit B., Roux S.G., Argoul F., Khalil A., Gileva O., Naimark O., Arneodo A., “Comparative multifractal analysis of dynamic infrared thermograms and X-ray mammograms enlightens changes in the environment of malignant tumors”, Frontiers in Physiology, 7 (2016), 336 | DOI
[68] O. B. Naimark, “Energy release rate and criticality of multiscale defects kinetics”, International Journal of Fracture, 202:2 (2016), 271–279 | DOI
[69] M. Bizzarri, O. Naimark, J. Nieto-Villa, V. Fedeli, A. Giuliani, “Complexity in Biological Organization: Deconstruction (and Subsequent Restating) of Key Concepts”, Entropy, 22:8 (2020), 885 | DOI