Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2020_15_2_a13, author = {G. P. Neverova and O. L. Zhdanova and A. I. Abakumov}, title = {Discrete-time model of seasonal plankton bloom}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {235--250}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a13/} }
TY - JOUR AU - G. P. Neverova AU - O. L. Zhdanova AU - A. I. Abakumov TI - Discrete-time model of seasonal plankton bloom JO - Matematičeskaâ biologiâ i bioinformatika PY - 2020 SP - 235 EP - 250 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a13/ LA - ru ID - MBB_2020_15_2_a13 ER -
G. P. Neverova; O. L. Zhdanova; A. I. Abakumov. Discrete-time model of seasonal plankton bloom. Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020) no. 2, pp. 235-250. http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a13/
[1] S. Chakraborty, U. Feudel, “Harmful algal blooms: Combining excitability and competition”, Theor. Ecol., 7 (2014), 221–237 | DOI
[2] A. B. Medvinsky, N. I. Nurieva, A. V. Rusakov, A. E. Bobyrev, V. A. Burmensky, E. A. Kriksunov, “Modelling aquatic communities: Trophic interactions and the body mass-and-age structure of fish populations give rise to long-period variations in fish population size”, Rus. J. Num. Anal. Math. Model, 30:1 (2015), 55–70 | MR | Zbl
[3] A. V. Rusakov, A. E. Bobyrev, V. A. Burmenskii, E. A. Kriksunov, N. I. Nurieva, A. B. Medvinskii, “Matematicheskaya model ozernogo soobschestva s uchetom tselochislennosti razmera populyatsii: khaoticheskie i dolgoperiodnye kolebaniya”, Kompyuternye issledovaniya i modelirovanie, 8:2 (2016), 229–239
[4] H. W. Paerl, J. Huisman, “Climate blooms like it hot”, Science, 320 (2008), 57–58 | DOI
[5] R. J. Charlson, J. E. Lovelock, M. O. Andreae, S. G. Warren, “Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate”, Nature, 326 (1987), 655–661 | DOI
[6] R. Simo, “Production of atmospheric sulfur by oceanic plankton: biogeochemical, ecological and evolutionary links”, Trends in Ecology and Evolution, 16 (2001), 287–294 | DOI
[7] K. J. Flynn, “Castles built on sand: dysfunctionality in plankton models and the inadequacy of dialogue between biologists and modellers”, J. Plankton Res, 27 (2005), 1205–1210 | DOI
[8] I. K. Ivaschenko, E. M. Igumnova, I. P. Lazarchuk, I. E. Timchenko, “Soglasovanie prostranstvennykh raspredelenii parametrov ekosistemy s dannymi distantsionnogo zondirovaniya morskoi poverkhnosti”, Ekologicheskaya bezopasnost pribrezhnoi i shelfovoi zon i kompleksnoe ispolzovanie resursov shelfa, 23 (2010), 61–69
[9] A. I. Abakumov, Yu. G. Izrailskii, “Vliyanie uslovii sredy na raspredelenie fitoplanktona v vodoeme”, Matematicheskaya biologiya i bioinformatika, 7:1 (2012), 274–283 | DOI
[10] A. I. Abakumov, Yu. G. Izrailskii, “Modelnyi sposob otsenki soderzhaniya khlorofilla v more na osnovanii sputnikovoi informatsii”, Kompyuternye issledovaniya i modelirovanie, 5:3 (2013), 473–482
[11] A. V. Kartushinskii, “Chislennoe modelirovanie effektov gidrofizicheskogo vozdeistviya na raspredelenie fitoplanktona”, Matematicheskaya biologiya i bioinformatika, 7:1 (2012), 112–124 | DOI
[12] S. Ya. Pak, A. I. Abakumov, “Modelnyi sposob vosstanovleniya sostoyaniya fitoplanktona v vertikalnom stolbe vody po sputnikovym dannym o poverkhnostnom sloe”, Informatika i sistemy upravleniya, 2014, no. 3, 23–32
[13] A. I. Abakumov, S. Ya. Pak, M. A. Morozov, A. K. Tynybekov, “Modelnaya otsenka biomassy fitoplanktona oz. Issyk-Kul po dannym distantsionnogo zondirovaniya”, Biologiya vnutrennikh vod, 4 (2019), 90–97 | DOI
[14] Yu. V. Shambarova, I. E. Stepochkin, S. P. Zakharkov, “Verifikatsiya VGPM i K modelei pervichnoi produktsii v severo-zapadnoi chasti Yaponskogo morya po sudovym i sputnikovym dannym”, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 16:2 (2019), 186–195
[15] V. Volterra, Matematicheskaya teoriya borby za suschestvovanie, Nauka, M., 2004, 288 pp.
[16] A. Huppert, B. Blasius, R. Olinky, L. Stone, “A model for seasonal phytoplankton blooms”, J. Theor. Biol, 236:3 (2005), 276–290 | DOI | MR | Zbl
[17] S. Kartal, M. Kar, N. Kartal, F. Gurcan, “Modelling and analysis of a phytoplankton-zooplankton system with continuous and discrete time”, Mathematical and Computer Modelling of Dynamical Systems, 2016 | DOI | MR
[18] P. J.S. Franks, “NPZ models of plankton dynamics: their construction, coupling to physics, and application”, Journal of Oceanography, 58 (2002), 379–387 | DOI
[19] D. J.S. Montagnes, A. Fenton, “Prey-abundance affects zooplankton assimilation efficiency and the outcome of biogeochemical models”, Ecological Modelling, 243 (2012), 1–7 | DOI
[20] C. A. Edwards, H. P. Batchelder, T. M. Powell, “Modeling microzooplankton and macrozooplankton dynamics within a coastal upwelling system”, Journal of Plankton Research, 22:9 (2000), 1619–1648 | DOI
[21] G. P. Neverova, O. L. Zhdanova, E. A. Kolbina, A. I. Abakumov, “Planktonnoe soobschestvo: vliyanie zooplanktona na dinamiku fitoplanktona”, Kompyuternye issledovaniya i modelirovanie, 11:4 (2019), 751–768 | DOI | MR
[22] E. E. Giricheva, “Vliyanie troficheskikh otnoshenii v soobschestve planktona na ego prostranstvenno-vremennuyu dinamiku”, Matematicheskaya biologiya i bioinformatika, 14:2 (2019), 393–405 | DOI
[23] D. M. Anderson, Y. Kaoru, A. W. White, Estimated Annual Economic Impacts Form Harmful Algal Blooms (HABs) in the United States, Sea Grant Woods Hole, MA, 2000
[24] J. J. Walsh, B. Penta, D. A. Dieterle, W. P. Bissett, “Predictive ecological modeling of harmful algal blooms”, Hum. Ecol. Risk Assess. Int. J., 7 (2001), 1369–1383 | DOI
[25] T. J. Smayda, Novel Phytoplankton Blooms: Causes and Impact of Recurrent Brown Tides and Other Unusual Blooms, eds. Cosper E. M., V. M. Bricelj, E. J. Carpenter, Springer, Berlin, 1989, 449–483 | DOI
[26] G. M. Hallegraeff, “A review of harmful algal blooms and their apparent global increase”, Phycologia, 32 (1993), 79–99 | DOI
[27] J. Chattopadhayay, R. R. Sarkar, S. Mandal, “Toxin-producing plankton may act as a biological control for planktonic blooms-field study and mathematical modelling”, J. Theor. Biol., 215 (2002), 333–344 | DOI
[28] A. Huppert, B. Blasius, L. Stone, “A model of phytoplankton blooms”, The Am. Nat., 159 (2002), 156–171 | DOI
[29] A. Huppert, R. Olinky, L. Stone, “Bottom-up excitable models of phytoplankton blooms”, Bull. Math. Biol., 66 (2004), 865–878 | DOI | MR | Zbl
[30] M. Rehim, Z. Zhang, A. Muhammadhaji, “Mathematical analysis of a nutrient-plankton system with delay”, Springer Plus, 5:1 (2016), 1055 | DOI
[31] T. Saha, M. Bandyopadhyay, “Dynamical analysis of toxin producing phytoplankton-zooplankton interactions”, Nonlinear Analysis. Real World Applications, 10 (2009), 314–332 | DOI | MR | Zbl
[32] S. Gakkhar, A. Singa, “Effects of the delay and seasonality on toxin producing phytoplankton-zooplankton system”, International Journal of Biomathematics, 5 (2012), 1250047 | DOI | MR | Zbl
[33] M. Rehim, W. Wu, A. Muhammadhaji, “On the dynamical behavior of toxic-phytoplankton-zooplankton model with delay”, Discrete Dynamics in Nature and Society, 2015, 756315 | DOI | MR | Zbl
[34] E. Ya. Frisman, M. P. Kulakov, O. L. Revutskaya, O. L. Zhdanova, G. P. Neverova, “Osnovnye napravleniya i obzor sovremennogo sostoyaniya issledovanii dinamiki strukturirovannykh i vzaimodeistvuyuschikh populyatsii”, Kompyuternye issledovaniya i modelirovanie, 11:1 (2019), 119–151 | MR
[35] S. Chatterjee, E. Venturino, S. Chakraborty, J. Chattopadhyay, “A simple mathematical model for seasonal planktonic blooms”, Mathematical Methods in the Applied Sciences, 32:13 (2009), 1738–1750 | DOI | MR | Zbl
[36] E. Graneli, N. Johansson, “Increase in the production of allelopathic Prymnesium parvum cells grown under N- or P-deficient conditions”, Harmful Algae, 2 (2003), 135–145 | DOI
[37] M. Shilo, “Formation and mode of action of algal toxins”, Bacteriological Reviews, 31 (1967), 180–193 | DOI
[38] N. Johansson, E. Graneli, Harmful and Toxic Algal Blooms, eds. T. Yasumoto, Y. Oshima, Y. Fukuyo, Intergovernmental Oceanographic Commission of UNESCO, Paris, 1996, 277–280
[39] N. Johansson, E. Graneli, “Influence of different nutrient conditions on cell density, chemical composition and toxicity of Prymnesium parvum (Haptophyta) in semi-continuous cultures”, Journal of the Experimental Marine Biology and Ecology, 239 (1999), 243–258 | DOI
[40] B. Reguera, Y. Oshima, Toxic Marine Phytoplankton, Proceedings of the Fourth International Conference on Toxic Marine Phytoplankton (June 26-30, Lund, Sweden), ed. Graneli E., Elsevier, New York, 1990, 316–319
[41] S. S. Bates, A. S.W. DeFreitas, J. E. Milley, R. Pocklington, M. A. Quilliam, J. C. Smith, J. Worms, “Controls on domain acid production by the diatom Nitzchia pungens f.multiseries in cultures: nutrients and irradiance”, Can. J. Fish. Aquat. Sci., 48 (1991), 1136–1144 | DOI
[42] S. S. Bates, J. Worms, J. C. Smith, “Effects of ammonium and nitrate on growth and domoic acid production by Nitzschia pungens in batch culture”, Can. J. Fish. Aquat. Sci, 50 (1992), 1248–1254 | DOI
[43] S. S. Bates, C. Lege, Smith K. M., Harmful and Toxic Algal Blooms, eds. Yasumoto T., Oshima Y., Fukuyo Y., Intergovernmental Oceanographic Commission of UNESCO, Paris, 1996, 163–166
[44] T. Igarashi, M. Satake, T. Yasumoto, “Prymnesin-2: a potent ichtyotoxic and haemolytic glycoside isolated from the red tide algae Prymnesium parvum”, Journal of the American Chemical Society, 118 (1996), 479–480 | DOI
[45] G. Pohnert, “Diatom/Copepod interactions in plankton: the indirect chemical defense of unicellular algae”, Chembiochem, 6 (2005), 946–959 | DOI
[46] K. Kirk, J. Gilbert, “Variations in herbivore response to chemical defenses: zooplankton foraging on toxic cyanobacteria”, Ecology, 73 (1992), 2208–2217 | DOI
[47] J. T. Turner, P. A. Tester, “Toxic marine phytoplankton, zooplankton, zooplankton grazers, and pelagic food webs”, Limnology and Oceanography, 42 (1997), 1203–1214 | DOI
[48] E. Van Donk, M. Lurling, W. Lampert, The Ecology and Evolution of Inducible Defenses, eds. Tollrian R., Harvell C.D., Princeton University Press, Princeton, 1999, 89–103
[49] M. F. Watanabe, H. D. Park, M. Watanabe, “Composition of Microcystis species and heptapeptide toxins”, Verh International Verein Limnology, 25 (1994), 2226–2229
[50] C. W. Gill, R. P. Harris, “Behavioural responses of the copepods Calanus Helgolandicus and Temora longicornis to dinoflagellate diets”, Journal of the Marine Biological Association of the United Kingdom, 67 (1987), 785–801 | DOI
[51] W. R. DeMott, F. Moxter, “Foraging on cyanobacteria by copepods: responses to chemical defenses and resource abundance”, Ecology, 72 (1991), 1820–1834 | DOI
[52] O. L. Revutskaya, M. P. Kulakov, E. Ya. Frisman, “Bistabilnost i bifurkatsii v modifitsirovannoi modeli Nikolsona Beili pri uchete vozrastnoi struktury zhertvy”, Matematicheskaya biologiya i bioinformatika, 14:1 (2019), 257–278 | DOI
[53] Yu. V. Tyutyunov, L. I. Titova, F. A. Surkov, E. N. Bakaeva, “Troficheskaya funktsiya kolovratok-fitofagov (Rotatoria)”, Eksperiment i modelirovanie. Zhurnal obschei biologii, 71:1 (2010), 52–62
[54] A. P. Kuznetsov, A. V. Savin, Yu. V. Sedova, L. V. Tyuryukina, Bifurkatsii otobrazhenii, OOO Izdatelskii tsentr «Nauka», Saratov, 2012, 196 pp.