Discrete-time model of seasonal plankton bloom
Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020) no. 2, pp. 235-250.

Voir la notice de l'article provenant de la source Math-Net.Ru

The most interesting results in modeling phytoplankton bloom were obtained based on a modification of the classical system of phytoplankton and zooplankton interaction. The modifications using delayed equations, as well as piecewise continuous functions with a delayed response to intoxication processes, made it possible to obtain adequate phytoplankton dynamics like in nature. This work develops a dynamic model of phytoplankton-zooplankton community consisting of two equations with discrete time. We use recurrent equations, which allows to describe delay in response naturally. The proposed model takes into account the phytoplankton toxicity and zooplankton response associated with phytoplankton toxicity. We use a discrete analogue of the Verhulst model to describe the dynamics of each of the species in the community under autoregulation processes. We use Holling-II type response function taking into account predator saturation to describe decrease in phytoplankton density due to its consumption by zooplankton. Growth and survival rates of zooplankton also depend on its feeding. Zooplankton mortality, caused by an increase in the toxic substances concentration with high density of zooplankton, is included in the limiting processes. An analytical and numerical study of the model proposed is made. The analysis shows that the stability loss of nontrivial fixed point corresponding to the coexistence of phytoplankton and zooplankton can occur through a cascade of period doubling bifurcations and according to the Neimark–Saker scenario leading to the appearance of quasiperiodic fluctuations as well. The proposed dynamic model of the phytoplankton and zooplankton community allows observing long-period oscillations, which is consistent with the results of field experiments. As well, the model have multistability areas, where a variation in initial conditions with the unchanged values of all model parameters can result in a shift of the current dynamic mode.
@article{MBB_2020_15_2_a13,
     author = {G. P. Neverova and O. L. Zhdanova and A. I. Abakumov},
     title = {Discrete-time model of seasonal plankton bloom},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {235--250},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a13/}
}
TY  - JOUR
AU  - G. P. Neverova
AU  - O. L. Zhdanova
AU  - A. I. Abakumov
TI  - Discrete-time model of seasonal plankton bloom
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2020
SP  - 235
EP  - 250
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a13/
LA  - ru
ID  - MBB_2020_15_2_a13
ER  - 
%0 Journal Article
%A G. P. Neverova
%A O. L. Zhdanova
%A A. I. Abakumov
%T Discrete-time model of seasonal plankton bloom
%J Matematičeskaâ biologiâ i bioinformatika
%D 2020
%P 235-250
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a13/
%G ru
%F MBB_2020_15_2_a13
G. P. Neverova; O. L. Zhdanova; A. I. Abakumov. Discrete-time model of seasonal plankton bloom. Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020) no. 2, pp. 235-250. http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a13/

[1] S. Chakraborty, U. Feudel, “Harmful algal blooms: Combining excitability and competition”, Theor. Ecol., 7 (2014), 221–237 | DOI

[2] A. B. Medvinsky, N. I. Nurieva, A. V. Rusakov, A. E. Bobyrev, V. A. Burmensky, E. A. Kriksunov, “Modelling aquatic communities: Trophic interactions and the body mass-and-age structure of fish populations give rise to long-period variations in fish population size”, Rus. J. Num. Anal. Math. Model, 30:1 (2015), 55–70 | MR | Zbl

[3] A. V. Rusakov, A. E. Bobyrev, V. A. Burmenskii, E. A. Kriksunov, N. I. Nurieva, A. B. Medvinskii, “Matematicheskaya model ozernogo soobschestva s uchetom tselochislennosti razmera populyatsii: khaoticheskie i dolgoperiodnye kolebaniya”, Kompyuternye issledovaniya i modelirovanie, 8:2 (2016), 229–239

[4] H. W. Paerl, J. Huisman, “Climate blooms like it hot”, Science, 320 (2008), 57–58 | DOI

[5] R. J. Charlson, J. E. Lovelock, M. O. Andreae, S. G. Warren, “Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate”, Nature, 326 (1987), 655–661 | DOI

[6] R. Simo, “Production of atmospheric sulfur by oceanic plankton: biogeochemical, ecological and evolutionary links”, Trends in Ecology and Evolution, 16 (2001), 287–294 | DOI

[7] K. J. Flynn, “Castles built on sand: dysfunctionality in plankton models and the inadequacy of dialogue between biologists and modellers”, J. Plankton Res, 27 (2005), 1205–1210 | DOI

[8] I. K. Ivaschenko, E. M. Igumnova, I. P. Lazarchuk, I. E. Timchenko, “Soglasovanie prostranstvennykh raspredelenii parametrov ekosistemy s dannymi distantsionnogo zondirovaniya morskoi poverkhnosti”, Ekologicheskaya bezopasnost pribrezhnoi i shelfovoi zon i kompleksnoe ispolzovanie resursov shelfa, 23 (2010), 61–69

[9] A. I. Abakumov, Yu. G. Izrailskii, “Vliyanie uslovii sredy na raspredelenie fitoplanktona v vodoeme”, Matematicheskaya biologiya i bioinformatika, 7:1 (2012), 274–283 | DOI

[10] A. I. Abakumov, Yu. G. Izrailskii, “Modelnyi sposob otsenki soderzhaniya khlorofilla v more na osnovanii sputnikovoi informatsii”, Kompyuternye issledovaniya i modelirovanie, 5:3 (2013), 473–482

[11] A. V. Kartushinskii, “Chislennoe modelirovanie effektov gidrofizicheskogo vozdeistviya na raspredelenie fitoplanktona”, Matematicheskaya biologiya i bioinformatika, 7:1 (2012), 112–124 | DOI

[12] S. Ya. Pak, A. I. Abakumov, “Modelnyi sposob vosstanovleniya sostoyaniya fitoplanktona v vertikalnom stolbe vody po sputnikovym dannym o poverkhnostnom sloe”, Informatika i sistemy upravleniya, 2014, no. 3, 23–32

[13] A. I. Abakumov, S. Ya. Pak, M. A. Morozov, A. K. Tynybekov, “Modelnaya otsenka biomassy fitoplanktona oz. Issyk-Kul po dannym distantsionnogo zondirovaniya”, Biologiya vnutrennikh vod, 4 (2019), 90–97 | DOI

[14] Yu. V. Shambarova, I. E. Stepochkin, S. P. Zakharkov, “Verifikatsiya VGPM i K modelei pervichnoi produktsii v severo-zapadnoi chasti Yaponskogo morya po sudovym i sputnikovym dannym”, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 16:2 (2019), 186–195

[15] V. Volterra, Matematicheskaya teoriya borby za suschestvovanie, Nauka, M., 2004, 288 pp.

[16] A. Huppert, B. Blasius, R. Olinky, L. Stone, “A model for seasonal phytoplankton blooms”, J. Theor. Biol, 236:3 (2005), 276–290 | DOI | MR | Zbl

[17] S. Kartal, M. Kar, N. Kartal, F. Gurcan, “Modelling and analysis of a phytoplankton-zooplankton system with continuous and discrete time”, Mathematical and Computer Modelling of Dynamical Systems, 2016 | DOI | MR

[18] P. J.S. Franks, “NPZ models of plankton dynamics: their construction, coupling to physics, and application”, Journal of Oceanography, 58 (2002), 379–387 | DOI

[19] D. J.S. Montagnes, A. Fenton, “Prey-abundance affects zooplankton assimilation efficiency and the outcome of biogeochemical models”, Ecological Modelling, 243 (2012), 1–7 | DOI

[20] C. A. Edwards, H. P. Batchelder, T. M. Powell, “Modeling microzooplankton and macrozooplankton dynamics within a coastal upwelling system”, Journal of Plankton Research, 22:9 (2000), 1619–1648 | DOI

[21] G. P. Neverova, O. L. Zhdanova, E. A. Kolbina, A. I. Abakumov, “Planktonnoe soobschestvo: vliyanie zooplanktona na dinamiku fitoplanktona”, Kompyuternye issledovaniya i modelirovanie, 11:4 (2019), 751–768 | DOI | MR

[22] E. E. Giricheva, “Vliyanie troficheskikh otnoshenii v soobschestve planktona na ego prostranstvenno-vremennuyu dinamiku”, Matematicheskaya biologiya i bioinformatika, 14:2 (2019), 393–405 | DOI

[23] D. M. Anderson, Y. Kaoru, A. W. White, Estimated Annual Economic Impacts Form Harmful Algal Blooms (HABs) in the United States, Sea Grant Woods Hole, MA, 2000

[24] J. J. Walsh, B. Penta, D. A. Dieterle, W. P. Bissett, “Predictive ecological modeling of harmful algal blooms”, Hum. Ecol. Risk Assess. Int. J., 7 (2001), 1369–1383 | DOI

[25] T. J. Smayda, Novel Phytoplankton Blooms: Causes and Impact of Recurrent Brown Tides and Other Unusual Blooms, eds. Cosper E. M., V. M. Bricelj, E. J. Carpenter, Springer, Berlin, 1989, 449–483 | DOI

[26] G. M. Hallegraeff, “A review of harmful algal blooms and their apparent global increase”, Phycologia, 32 (1993), 79–99 | DOI

[27] J. Chattopadhayay, R. R. Sarkar, S. Mandal, “Toxin-producing plankton may act as a biological control for planktonic blooms-field study and mathematical modelling”, J. Theor. Biol., 215 (2002), 333–344 | DOI

[28] A. Huppert, B. Blasius, L. Stone, “A model of phytoplankton blooms”, The Am. Nat., 159 (2002), 156–171 | DOI

[29] A. Huppert, R. Olinky, L. Stone, “Bottom-up excitable models of phytoplankton blooms”, Bull. Math. Biol., 66 (2004), 865–878 | DOI | MR | Zbl

[30] M. Rehim, Z. Zhang, A. Muhammadhaji, “Mathematical analysis of a nutrient-plankton system with delay”, Springer Plus, 5:1 (2016), 1055 | DOI

[31] T. Saha, M. Bandyopadhyay, “Dynamical analysis of toxin producing phytoplankton-zooplankton interactions”, Nonlinear Analysis. Real World Applications, 10 (2009), 314–332 | DOI | MR | Zbl

[32] S. Gakkhar, A. Singa, “Effects of the delay and seasonality on toxin producing phytoplankton-zooplankton system”, International Journal of Biomathematics, 5 (2012), 1250047 | DOI | MR | Zbl

[33] M. Rehim, W. Wu, A. Muhammadhaji, “On the dynamical behavior of toxic-phytoplankton-zooplankton model with delay”, Discrete Dynamics in Nature and Society, 2015, 756315 | DOI | MR | Zbl

[34] E. Ya. Frisman, M. P. Kulakov, O. L. Revutskaya, O. L. Zhdanova, G. P. Neverova, “Osnovnye napravleniya i obzor sovremennogo sostoyaniya issledovanii dinamiki strukturirovannykh i vzaimodeistvuyuschikh populyatsii”, Kompyuternye issledovaniya i modelirovanie, 11:1 (2019), 119–151 | MR

[35] S. Chatterjee, E. Venturino, S. Chakraborty, J. Chattopadhyay, “A simple mathematical model for seasonal planktonic blooms”, Mathematical Methods in the Applied Sciences, 32:13 (2009), 1738–1750 | DOI | MR | Zbl

[36] E. Graneli, N. Johansson, “Increase in the production of allelopathic Prymnesium parvum cells grown under N- or P-deficient conditions”, Harmful Algae, 2 (2003), 135–145 | DOI

[37] M. Shilo, “Formation and mode of action of algal toxins”, Bacteriological Reviews, 31 (1967), 180–193 | DOI

[38] N. Johansson, E. Graneli, Harmful and Toxic Algal Blooms, eds. T. Yasumoto, Y. Oshima, Y. Fukuyo, Intergovernmental Oceanographic Commission of UNESCO, Paris, 1996, 277–280

[39] N. Johansson, E. Graneli, “Influence of different nutrient conditions on cell density, chemical composition and toxicity of Prymnesium parvum (Haptophyta) in semi-continuous cultures”, Journal of the Experimental Marine Biology and Ecology, 239 (1999), 243–258 | DOI

[40] B. Reguera, Y. Oshima, Toxic Marine Phytoplankton, Proceedings of the Fourth International Conference on Toxic Marine Phytoplankton (June 26-30, Lund, Sweden), ed. Graneli E., Elsevier, New York, 1990, 316–319

[41] S. S. Bates, A. S.W. DeFreitas, J. E. Milley, R. Pocklington, M. A. Quilliam, J. C. Smith, J. Worms, “Controls on domain acid production by the diatom Nitzchia pungens f.multiseries in cultures: nutrients and irradiance”, Can. J. Fish. Aquat. Sci., 48 (1991), 1136–1144 | DOI

[42] S. S. Bates, J. Worms, J. C. Smith, “Effects of ammonium and nitrate on growth and domoic acid production by Nitzschia pungens in batch culture”, Can. J. Fish. Aquat. Sci, 50 (1992), 1248–1254 | DOI

[43] S. S. Bates, C. Lege, Smith K. M., Harmful and Toxic Algal Blooms, eds. Yasumoto T., Oshima Y., Fukuyo Y., Intergovernmental Oceanographic Commission of UNESCO, Paris, 1996, 163–166

[44] T. Igarashi, M. Satake, T. Yasumoto, “Prymnesin-2: a potent ichtyotoxic and haemolytic glycoside isolated from the red tide algae Prymnesium parvum”, Journal of the American Chemical Society, 118 (1996), 479–480 | DOI

[45] G. Pohnert, “Diatom/Copepod interactions in plankton: the indirect chemical defense of unicellular algae”, Chembiochem, 6 (2005), 946–959 | DOI

[46] K. Kirk, J. Gilbert, “Variations in herbivore response to chemical defenses: zooplankton foraging on toxic cyanobacteria”, Ecology, 73 (1992), 2208–2217 | DOI

[47] J. T. Turner, P. A. Tester, “Toxic marine phytoplankton, zooplankton, zooplankton grazers, and pelagic food webs”, Limnology and Oceanography, 42 (1997), 1203–1214 | DOI

[48] E. Van Donk, M. Lurling, W. Lampert, The Ecology and Evolution of Inducible Defenses, eds. Tollrian R., Harvell C.D., Princeton University Press, Princeton, 1999, 89–103

[49] M. F. Watanabe, H. D. Park, M. Watanabe, “Composition of Microcystis species and heptapeptide toxins”, Verh International Verein Limnology, 25 (1994), 2226–2229

[50] C. W. Gill, R. P. Harris, “Behavioural responses of the copepods Calanus Helgolandicus and Temora longicornis to dinoflagellate diets”, Journal of the Marine Biological Association of the United Kingdom, 67 (1987), 785–801 | DOI

[51] W. R. DeMott, F. Moxter, “Foraging on cyanobacteria by copepods: responses to chemical defenses and resource abundance”, Ecology, 72 (1991), 1820–1834 | DOI

[52] O. L. Revutskaya, M. P. Kulakov, E. Ya. Frisman, “Bistabilnost i bifurkatsii v modifitsirovannoi modeli Nikolsona Beili pri uchete vozrastnoi struktury zhertvy”, Matematicheskaya biologiya i bioinformatika, 14:1 (2019), 257–278 | DOI

[53] Yu. V. Tyutyunov, L. I. Titova, F. A. Surkov, E. N. Bakaeva, “Troficheskaya funktsiya kolovratok-fitofagov (Rotatoria)”, Eksperiment i modelirovanie. Zhurnal obschei biologii, 71:1 (2010), 52–62

[54] A. P. Kuznetsov, A. V. Savin, Yu. V. Sedova, L. V. Tyuryukina, Bifurkatsii otobrazhenii, OOO Izdatelskii tsentr «Nauka», Saratov, 2012, 196 pp.