Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2020_15_2_a11, author = {A. S. Lelekov and R. P. Trenkenshu}, title = {Modeling of chlorophyll $a$ content in microalgae cultures}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {158--171}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a11/} }
TY - JOUR AU - A. S. Lelekov AU - R. P. Trenkenshu TI - Modeling of chlorophyll $a$ content in microalgae cultures JO - Matematičeskaâ biologiâ i bioinformatika PY - 2020 SP - 158 EP - 171 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a11/ LA - ru ID - MBB_2020_15_2_a11 ER -
A. S. Lelekov; R. P. Trenkenshu. Modeling of chlorophyll $a$ content in microalgae cultures. Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020) no. 2, pp. 158-171. http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a11/
[1] Z. Z. Finenko, N. Hoepffner, R. Williams, S. A. Piontkovski, “Phytoplankton carbon to chlorophyll a rario: response to light, temperature and nutrient limitation”, Morskoi ekologicheskii zhurnal, 2:2 (2003), 40–64
[2] T. Ya. Churilova, O. V. Krivenko, V. V. Suslin, T. V. Efimova, N. A. Moiseeva, “Pervichnaya produktsiya Chernogo morya: spektralnyi podkhod”, Morskoi biologicheskii zhurnal, 1:3 (2016), 50–53
[3] I. V. Kovaleva, Z. Z. Finenko, “Kolichestvennye zakonomernosti izmeneniya otnositelnogo soderzhaniya khlorofilla pri sovmestnom deistvii sveta i temperatury u diatomovykh vodoroslei”, Voprosy sovremennoi algologii, 2019, no. 3, 28–36 | DOI
[4] S. Nielsen, E. Jorgensen, “The adaptation of plankton algae. 1. General part”, Physiol. Plantar, 21 (1968), 401–413 | DOI
[5] K. Richardson, J. Beardall, J. Raven, “Adaptation of unicellular algae to irradiance: an analysis of strategies”, New Phytol., 93 (1983), 157–191 | DOI
[6] H. L. Macintyre, T. M. Kana, T. Anning, R. J. Geider, “Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria”, J. Phycol., 38 (2002), 17–38 | DOI
[7] D. Kholl, K. Rao, Fotosintez, Mir, M., 1983, 133 pp.
[8] A. T. Mokronosov, V. F. Gavrilenko, T. V. Zhigalova, Fotosintez. Fiziologo-ekologicheskie i biokhimicheskie aspekty, Akademiya, M., 2006, 448 pp.
[9] G. S. Minyuk, I. V. Drobetskaya, R. P. Trenkenshu, O. Yu. Vyalova, “Rostovye i biokhimicheskie kharakteristiki Spirulina (Arthrospira) platensis (Nordst) Geitler pri razlichnykh usloviyakh azotnogo pitaniya”, Ekologiya morya, 62 (2002), 61–66
[10] A. B. Borovkov, I. N. Gudvilovich, “Growth and biochemical indices of Dunaliella salina under conditions of batch culture”, Hydrobiol. Journ., 49:2 (2013), 75–84 | DOI
[11] R. J. Geider, “Light and temperature dependence of the carbon to chlorophyll a ratio in microalgae and cyanobacteria: implications for physiology and growth of phytoplankton”, New Phytol., 106:1 (1987), 1–34 | DOI
[12] J. E. Cloern, C. Grenz, L. Vidergar-Lucas, “An empirical model of the phytoplankton chlorophyll:carbon ratio the conversation between productivity and growth”, Limnol. Oceanogr, 40:7 (1995), 1310–1321 | DOI
[13] R. J. Geider, H. L. MacInture, T. M. Kana, “A dynamic regulatory model of phytoplankton acclimation to light, nutrience and temperature”, Mar. Ecol. Prog. Ser., 148 (1997), 187–200 | DOI
[14] R. G. Gevorgiz, R. P. Trenkenshu, “Svetozavisimoe soderzhanie pigmentov v mikrovodoroslyakh. Statsionarnyi protsess”, Algologiya, 8:3 (1998), 273–277 | MR
[15] A. B. Borovkov, “Matematicheskaya model svetozavisimogo soderzhaniya pigmentov v kletkakh mikrovodoroslei dlya statsionarnogo dinamicheskogo ravnovesiya khemostatnoi kultury”, Ekologiya morya, 80 (2010), 17–24
[16] R. Goericke, N. A. Welschmeyer, “Pigment turnover in the marine diatom Thalassiosira weissflogii. 1. The $^{14}$CO$_2$-labeling kinetics of chlorophyll a”, J. Phycol., 28 (1992), 498–507 | DOI
[17] R. P. Trenkenshu, “Vliyanie sveta na makromolekulyarnyi sostav mikrovodoroslei v nepreryvnoi kulture nevysokoi plotnosti (Chast 1)”, Voprosy sovremennoi algologii, 2017, no. 2 (data obrascheniya: 18.09.2020) http://algology.ru/1180
[18] A. S. Lelekov, R. P. Trenkenshu, “Fundamentalnye printsipy modelirovaniya fotobiosinteza mikrovodoroslei”, Voprosy sovremennoi algologii, 18:3 (2018) | DOI
[19] Ermakov I. P. (red.), Fiziologiya rastenii, Uch. dlya stud. vuzov, Izd-vo «Akademiya», M., 2005, 640 pp.
[20] A. B. Rubin, T. E. Krendeleva, “Regulyatsiya pervichnykh protsessov fotosinteza”, Uspekhi biologicheskoi khimii, 43 (2003), 225–266
[21] S. S. Medvedev, Fiziologiya rastenii, uchebnik, Izd-vo S. Peterb. un-ta, S.-Pb., 2004, 336 pp.
[22] A. A. Ivlev, “Kolebatelnaya priroda uglerodnogo metabolizma v fotosinteziruyuschei kletke po dannym izotopnogo sostava ugleroda”, Uspekhi sovremennoi biologii, 131:2 (2011), 178–192
[23] R. P. Trenkenshu, “Vliyanie sveta na makromolekulyarnyi sostav mikrovodoroslei v nepreryvnoi kulture nevysokoi plotnosti (Chast 2)”, Voprosy sovremennoi algologii, 2017, no. 3 (data obrascheniya: 18.09.2020) http://algology.ru/1241
[24] A. L. Avsiyan, “Dinamika poteri biomassy v kulture Arthrospira platensis (Nordst) Geitler (Cyanoprokaryota) v temnovykh usloviyakh”, Algologiya, 24:3 (2014), 417–420
[25] G. Torzillo, A. Sacchi, R. Materassi, A. Richmond, “Effect of temperature on yield and night biomass loss in Spirulina platensis grown outdoors in tubular photobioreactors”, J. Appl. Phycol., 3 (1991), 103–109 | DOI
[26] R. J. Geider, B. A. Osborne, “Respiration and microalgal growth: a review of the quantitative relationship between dark respiration and growth”, New phytol., 112:3 (1989), 327–341 | DOI
[27] C. Langdon, “The significance of respiration in production measurements based on oxygen”, ICES Mar. Sci. Symp., 197 (1993), 69–78
[28] L.N. Drozdov-Tikhomirov, G.I. Scurida, V. V. Serganova, “Inner metabolic fluxes in multienzyme systems: lysine synthesis on acetate by Corynebacterium glutamicum”, Biotechnologia (Moscow), 2:8 (1986), 28–37
[29] N. N. Nazipova, Yu. E. Elkin, V. V. Panyukov, L. N. Drozdov-Tikhomirov, “Raschet skorostei metabolicheskikh reaktsii v zhivoi rastuschei kletke metodom balansa statsionarnykh metabolicheskikh potokov (metod BSMP)”, Matematicheskaya biologiya i bioinformatika, 2:1 (2007), 98–119 | DOI
[30] J. C. Ogbonna, H. Tanaka, “Night biomass loss and changes in biochemical composition of cells during light/dark cyclic culture of Chlorella pyrenoidosa”, J. Ferm. Bioeng, 82:6 (1996), 558–564 | DOI
[31] V. N. Belyanin, F. Ya. Sidko, A. P. Trenkenshu, Energetika fotosinteziruyuschei kultury mikrovodoroslei, Nauka, Novosibirsk, 1980, 136 pp.
[32] P. G. Falkowski, T. G. Owens, “Light-shade adaptation: two strategies in marine phytoplankton”, Plant Physiol., 66 (1980), 592–595 | DOI
[33] E. N. Zavorueva, V. V. Zavoruev, S. P. Krum, Labilnost pervoi fotosistemy fototrofov v razlichnykh usloviyakh okruzhayuschei sredy, Sibirskii federalnyi universitet, Krasnoyarsk, 2011, 152 pp.
[34] N. V. Kozel, V. P. Domanskii, E. E. Manankina, K. O. Adamchyk, I. A. Dremuk, S. M. Savina, “The influence of the spectral composition of the led lighting on the structure of the photosynthetic apparatus of Spirulina platensis”, Proceedings of the National Academy of Sciences of Belarus, 2015, no. 2, 44–49 (in Russ.)
[35] T. V. Efimova, “Vliyanie spektralnogo sostava sveta na soderzhanie pigmentov v kletkakh mikrovodoroslei”, Morskoi ekologicheskii zhurnal, 2011, no. 2, 22–28
[36] I. A. Terskov, R. P. Trenkenshu, V. N. Belyanin, “Svetozavisimyi rost vodorosli Platymonas viridis v nepreryvnoi kulture”, Izvestiya Akademii nauk SSSR. Seriya biologicheskaya, 2:10 (1981), 103–108