Modeling of chlorophyll $a$ content in microalgae cultures
Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020) no. 2, pp. 158-171.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work focuses on mathematical modeling of light influence mechanisms on chlorophyll a content in microalgae biomass. The well-known qualitative models are based on concepts of synthesis and photodestructive oxidation of chlorophyll $a$, however the later for some microalgae species seems doubtful. We proposed an alternative approach to modeling the light-dependent chlorophyll $a$ content in microalgae biomass. The basic model is based on generally accepted two-stage photoautotrophic growth of microalgae. At the first stage, during photosynthesis a reserve part of biomass is formed, from which the biosynthesis of cell structures occurs at the second stage. Three partial solutions of the basic system of equations describing the dependence of chlorophyll $a$ content on the external light intensity are considered for various limiting conditions. Due to the equality of specific growth rates of formation of reserve and structural forms of biomass, the equations obtained can be used only for turbidostat cultures. Verification of the obtained equations for Arthrospira platensis allows us to estimate kinetic coefficients, the values of which are generally in good agreement with theoretically calculated ones. For approximate calculations, a simple equation is proposed that shows a good agreement with experimental data for Tetraselmis viridis ($R^2$ = 0.98), Dunaliella tertiolecta ($R^2$ = 0.92) and describes the results for Sceletonema costatum and Chlorella vulgaris ($R^2$ = 0.8) quite well. Chlorophyll $a$ refers to structural forms of biomass. The proportion of chlorophyll $a$ in the structural biomass is about 2.5–3.5 %, it is a species-specific parameter.
@article{MBB_2020_15_2_a11,
     author = {A. S. Lelekov and R. P. Trenkenshu},
     title = {Modeling of chlorophyll $a$ content in microalgae cultures},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {158--171},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a11/}
}
TY  - JOUR
AU  - A. S. Lelekov
AU  - R. P. Trenkenshu
TI  - Modeling of chlorophyll $a$ content in microalgae cultures
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2020
SP  - 158
EP  - 171
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a11/
LA  - ru
ID  - MBB_2020_15_2_a11
ER  - 
%0 Journal Article
%A A. S. Lelekov
%A R. P. Trenkenshu
%T Modeling of chlorophyll $a$ content in microalgae cultures
%J Matematičeskaâ biologiâ i bioinformatika
%D 2020
%P 158-171
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a11/
%G ru
%F MBB_2020_15_2_a11
A. S. Lelekov; R. P. Trenkenshu. Modeling of chlorophyll $a$ content in microalgae cultures. Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020) no. 2, pp. 158-171. http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a11/

[1] Z. Z. Finenko, N. Hoepffner, R. Williams, S. A. Piontkovski, “Phytoplankton carbon to chlorophyll a rario: response to light, temperature and nutrient limitation”, Morskoi ekologicheskii zhurnal, 2:2 (2003), 40–64

[2] T. Ya. Churilova, O. V. Krivenko, V. V. Suslin, T. V. Efimova, N. A. Moiseeva, “Pervichnaya produktsiya Chernogo morya: spektralnyi podkhod”, Morskoi biologicheskii zhurnal, 1:3 (2016), 50–53

[3] I. V. Kovaleva, Z. Z. Finenko, “Kolichestvennye zakonomernosti izmeneniya otnositelnogo soderzhaniya khlorofilla pri sovmestnom deistvii sveta i temperatury u diatomovykh vodoroslei”, Voprosy sovremennoi algologii, 2019, no. 3, 28–36 | DOI

[4] S. Nielsen, E. Jorgensen, “The adaptation of plankton algae. 1. General part”, Physiol. Plantar, 21 (1968), 401–413 | DOI

[5] K. Richardson, J. Beardall, J. Raven, “Adaptation of unicellular algae to irradiance: an analysis of strategies”, New Phytol., 93 (1983), 157–191 | DOI

[6] H. L. Macintyre, T. M. Kana, T. Anning, R. J. Geider, “Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria”, J. Phycol., 38 (2002), 17–38 | DOI

[7] D. Kholl, K. Rao, Fotosintez, Mir, M., 1983, 133 pp.

[8] A. T. Mokronosov, V. F. Gavrilenko, T. V. Zhigalova, Fotosintez. Fiziologo-ekologicheskie i biokhimicheskie aspekty, Akademiya, M., 2006, 448 pp.

[9] G. S. Minyuk, I. V. Drobetskaya, R. P. Trenkenshu, O. Yu. Vyalova, “Rostovye i biokhimicheskie kharakteristiki Spirulina (Arthrospira) platensis (Nordst) Geitler pri razlichnykh usloviyakh azotnogo pitaniya”, Ekologiya morya, 62 (2002), 61–66

[10] A. B. Borovkov, I. N. Gudvilovich, “Growth and biochemical indices of Dunaliella salina under conditions of batch culture”, Hydrobiol. Journ., 49:2 (2013), 75–84 | DOI

[11] R. J. Geider, “Light and temperature dependence of the carbon to chlorophyll a ratio in microalgae and cyanobacteria: implications for physiology and growth of phytoplankton”, New Phytol., 106:1 (1987), 1–34 | DOI

[12] J. E. Cloern, C. Grenz, L. Vidergar-Lucas, “An empirical model of the phytoplankton chlorophyll:carbon ratio the conversation between productivity and growth”, Limnol. Oceanogr, 40:7 (1995), 1310–1321 | DOI

[13] R. J. Geider, H. L. MacInture, T. M. Kana, “A dynamic regulatory model of phytoplankton acclimation to light, nutrience and temperature”, Mar. Ecol. Prog. Ser., 148 (1997), 187–200 | DOI

[14] R. G. Gevorgiz, R. P. Trenkenshu, “Svetozavisimoe soderzhanie pigmentov v mikrovodoroslyakh. Statsionarnyi protsess”, Algologiya, 8:3 (1998), 273–277 | MR

[15] A. B. Borovkov, “Matematicheskaya model svetozavisimogo soderzhaniya pigmentov v kletkakh mikrovodoroslei dlya statsionarnogo dinamicheskogo ravnovesiya khemostatnoi kultury”, Ekologiya morya, 80 (2010), 17–24

[16] R. Goericke, N. A. Welschmeyer, “Pigment turnover in the marine diatom Thalassiosira weissflogii. 1. The $^{14}$CO$_2$-labeling kinetics of chlorophyll a”, J. Phycol., 28 (1992), 498–507 | DOI

[17] R. P. Trenkenshu, “Vliyanie sveta na makromolekulyarnyi sostav mikrovodoroslei v nepreryvnoi kulture nevysokoi plotnosti (Chast 1)”, Voprosy sovremennoi algologii, 2017, no. 2 (data obrascheniya: 18.09.2020) http://algology.ru/1180

[18] A. S. Lelekov, R. P. Trenkenshu, “Fundamentalnye printsipy modelirovaniya fotobiosinteza mikrovodoroslei”, Voprosy sovremennoi algologii, 18:3 (2018) | DOI

[19] Ermakov I. P. (red.), Fiziologiya rastenii, Uch. dlya stud. vuzov, Izd-vo «Akademiya», M., 2005, 640 pp.

[20] A. B. Rubin, T. E. Krendeleva, “Regulyatsiya pervichnykh protsessov fotosinteza”, Uspekhi biologicheskoi khimii, 43 (2003), 225–266

[21] S. S. Medvedev, Fiziologiya rastenii, uchebnik, Izd-vo S. Peterb. un-ta, S.-Pb., 2004, 336 pp.

[22] A. A. Ivlev, “Kolebatelnaya priroda uglerodnogo metabolizma v fotosinteziruyuschei kletke po dannym izotopnogo sostava ugleroda”, Uspekhi sovremennoi biologii, 131:2 (2011), 178–192

[23] R. P. Trenkenshu, “Vliyanie sveta na makromolekulyarnyi sostav mikrovodoroslei v nepreryvnoi kulture nevysokoi plotnosti (Chast 2)”, Voprosy sovremennoi algologii, 2017, no. 3 (data obrascheniya: 18.09.2020) http://algology.ru/1241

[24] A. L. Avsiyan, “Dinamika poteri biomassy v kulture Arthrospira platensis (Nordst) Geitler (Cyanoprokaryota) v temnovykh usloviyakh”, Algologiya, 24:3 (2014), 417–420

[25] G. Torzillo, A. Sacchi, R. Materassi, A. Richmond, “Effect of temperature on yield and night biomass loss in Spirulina platensis grown outdoors in tubular photobioreactors”, J. Appl. Phycol., 3 (1991), 103–109 | DOI

[26] R. J. Geider, B. A. Osborne, “Respiration and microalgal growth: a review of the quantitative relationship between dark respiration and growth”, New phytol., 112:3 (1989), 327–341 | DOI

[27] C. Langdon, “The significance of respiration in production measurements based on oxygen”, ICES Mar. Sci. Symp., 197 (1993), 69–78

[28] L.N. Drozdov-Tikhomirov, G.I. Scurida, V. V. Serganova, “Inner metabolic fluxes in multienzyme systems: lysine synthesis on acetate by Corynebacterium glutamicum”, Biotechnologia (Moscow), 2:8 (1986), 28–37

[29] N. N. Nazipova, Yu. E. Elkin, V. V. Panyukov, L. N. Drozdov-Tikhomirov, “Raschet skorostei metabolicheskikh reaktsii v zhivoi rastuschei kletke metodom balansa statsionarnykh metabolicheskikh potokov (metod BSMP)”, Matematicheskaya biologiya i bioinformatika, 2:1 (2007), 98–119 | DOI

[30] J. C. Ogbonna, H. Tanaka, “Night biomass loss and changes in biochemical composition of cells during light/dark cyclic culture of Chlorella pyrenoidosa”, J. Ferm. Bioeng, 82:6 (1996), 558–564 | DOI

[31] V. N. Belyanin, F. Ya. Sidko, A. P. Trenkenshu, Energetika fotosinteziruyuschei kultury mikrovodoroslei, Nauka, Novosibirsk, 1980, 136 pp.

[32] P. G. Falkowski, T. G. Owens, “Light-shade adaptation: two strategies in marine phytoplankton”, Plant Physiol., 66 (1980), 592–595 | DOI

[33] E. N. Zavorueva, V. V. Zavoruev, S. P. Krum, Labilnost pervoi fotosistemy fototrofov v razlichnykh usloviyakh okruzhayuschei sredy, Sibirskii federalnyi universitet, Krasnoyarsk, 2011, 152 pp.

[34] N. V. Kozel, V. P. Domanskii, E. E. Manankina, K. O. Adamchyk, I. A. Dremuk, S. M. Savina, “The influence of the spectral composition of the led lighting on the structure of the photosynthetic apparatus of Spirulina platensis”, Proceedings of the National Academy of Sciences of Belarus, 2015, no. 2, 44–49 (in Russ.)

[35] T. V. Efimova, “Vliyanie spektralnogo sostava sveta na soderzhanie pigmentov v kletkakh mikrovodoroslei”, Morskoi ekologicheskii zhurnal, 2011, no. 2, 22–28

[36] I. A. Terskov, R. P. Trenkenshu, V. N. Belyanin, “Svetozavisimyi rost vodorosli Platymonas viridis v nepreryvnoi kulture”, Izvestiya Akademii nauk SSSR. Seriya biologicheskaya, 2:10 (1981), 103–108